Sensory perception testing by monofilaments in the digits of controls and workers with havs



Yüklə 0,5 Mb.
Pdf görüntüsü
səhifə6/11
tarix08.02.2022
ölçüsü0,5 Mb.
#83589
1   2   3   4   5   6   7   8   9   10   11
10.1007@s00420-020-01523-8

Table 1   

95th percentiles of sensory perception thresholds for the digits of men and women office workers

a

 Bootstrapped 95% percentile confidence interval



b

 One male was ambidextrous so their results (10 digits) were excluded when investigating hand dominance

Men

Women


Number 

of sub-


jects

Number of digits 95th percentile 95% 

confidence 

 interval

a

Number 


of sub-

jects


Number of digits 95th percentile 95% 

confidence 

 interval

a

All



155

1549


0.16

(0.16–0.16) 144

1440

0.16


(0.16–0.16)

Age


 < 30 years

18

180



0.16

(0.16–0.16) 37

370

0.07


(0.07–0.07)

 30–39 years

32

320


0.16

(0.16–0.16) 32

320

0.16


(0.12–0.16)

 40–49 years

54

540


0.16

(0.16–0.16) 37

370

0.16


(0.16–0.16)

 50 + years

51

509


0.16

(0.16–0.40) 38

380

0.16


(0.16–0.16)

Digit


 Little

155


309

0.16


(0.16–0.16) 144

288


0.07

(0.07–0.16)

 Ring

155


310

0.16


(0.16–0.16) 144

288


0.07

(0.07–0.16)

 Middle

155


310

0.16


(0.16–0.16) 144

288


0.16

(0.07–0.16)

 Index

155


310

0.16


(0.16–0.16) 144

288


0.16

(0.16–0.16)

 Thumb

155


310

0.16


(0.16–0.40) 144

288


0.16

(0.16–0.16)

Hand   dominance

b

 Dominant



154

769


0.16

(0.16–0.16) 144

720

0.16


(0.16–0.16)

 Non-dominant

154

770


0.16

(0.16–0.16) 144

720

0.16


(0.12–0.16)

Hand dominance and  digit

b

 Dominant Little



153

153


0.16

(0.16–0.16) 144

144

0.16


(0.07–0.16)

 Dominant Ring

154

154


0.16

(0.16–0.16) 144

144

0.07


(0.07–0.16)

 Dominant Middle

154

154


0.16

(0.16–0.16) 144

144

0.16


(0.07–0.16)

 Dominant Index

154

154


0.16

(0.16–0.16) 144

144

0.16


(0.16–0.16)

 Dominant Thumb

154

154


0.40

(0.16–0.40) 144

144

0.16


(0.16–0.16)

 Non-dominant 

Little

154


154

0.16


(0.16–0.16) 144

144


0.07

(0.07–0.16)

 Non-dominant Ring 154

154


0.16

(0.16–0.16) 144

144

0.07


(0.07–0.16)

 Non-dominant 

Middle

154


154

0.16


(0.16–0.16) 144

144


0.07

(0.07–0.16)

 Non-dominant 

Index


154

154


0.16

(0.16–0.16) 144

144

0.16


(0.07–0.16)

 Non-dominant 

Thumb

154


154

0.16


(0.16–0.40) 144

144


0.16

(0.16–0.16)




International Archives of Occupational and Environmental Health 

1 3


The relationship between the SWM threshold and the 

total number of thermal and vibration threshold abnormali-

ties in 120 hands of workers with HAVS is shown in Fig. 

2



There was an increase in the number of abnormal thresh-

olds as the SWM bend force increased, reaching a plateau 

at about 2 g-f. A fitted linear spline with a knot at 2 g-f 

indicated that, when the SWM bend force was < 2 g-f, the 

number of abnormal QST thresholds approximately doubled 

with each 1 g increase in force (95% CI 1.56–2.58). Similar 

curves were obtained when the SWM thresholds were com-

pared separately with the number of abnormal thermal or 

vibration results.

The AUC for abnormalities of thermal and vibration per-

ception in the index and little fingers in the same hand of 

workers with HAVS was 0.78 (95% CI 0.67–0.87) and for 

abnormalities of thermal or vibration perception was 0.84 

(95% CI 0.74–0.90). For the former, sensitivity was 100% 

when the SWM bend force was 0.4 g-f, decreasing as the 

bend force increased. Specificity increased as the SWM bend 

force increased reaching 100% at ≥ 10 g-f. A SWM cut-off 

of ≥ 1.0 g-f gave a sensitivity of 79% and a specificity of 64% 



Table 2   

Frequency distribution 

of sensory perception thresholds 

for the digits of office workers 

and heavy manual workers

a

 One person missing result for one finger



b

 Two people missing three results in total

Threshold (g–f)

Office workers (



n

 = 300)


Heavy manual workers (

n

 = 115)


Frequency

Percent


Cumulative 

percent


Frequency

Percent


Cumu-

lative 


percent

0.04


1144

38.1


38.1

90

7.8



7.8

0.07


1359

45.3


83.5

239


20.8

28.7


0.16

462


15.4

98.9


467

40.7


69.4

0.40


27

0.9


99.8

184


16.0

85.4


0.60

7

0.2



100.0

102


8.9

94.3


1.0

0

0.0



100.0

44

3.8



98.2

1.4


0

0.0


100.0

14

1.2



99.4

2.0


0

0.0


100.0

7

0.6



100.0

Total


2999

a

100.0



1147

b

100.0



Table 3   

Agreement between 

the first and second tests for 

identical digits of office workers 

and heavy manual workers

Values in cells show the number of digits with the specified results

Perfect agreement

Differ by one filament

Result at 

first test

(g-f)

Result at second test (g-f)



Total    

digits


0.04

0.07


0.16

0.40


0.60

0.04


102

19

3



0

0

124



0.07

29

38



19

0

0



86

0.16


4

15

54



5

0

78



0.40

0

0



4

4

0



8

0.60


0

0

3



1

0

4



Total

135


72

83

10



0

300


Table 4   

Frequency distribution of sensory perception thresholds for 

the digits of workers with HAVS

a

 One person missing one digit



Threshold (g–f)

Frequency

Percent

Cumu-


lative 

percent


0.04

4

0.6



0.6

0.07


41

6.6


7.3

0.16


175

28.3


35.5

0.4


89

14.4


49.9

0.6


80

12.9


62.8

1.0


95

15.3


78.2

1.4


52

8.4


86.6

2.0


34

5.5


92.1

4.0


27

4.4


96.4

6.0


11

1.8


98.2

 > 10


11

1.8


100.0

Total


619

a

100.0




 

International Archives of Occupational and Environmental Health

1 3

for abnormalities of thermal and vibration perception. The 



corresponding sensitivity and specificity for abnormalities 

of thermal or vibration perception was 68% and 89%, respec-

tively. Table 

5

 shows sensitivities and specificities of SWM 



thresholds for detecting abnormalities of QST in workers 

with HAVS.



Discussion

The sensory perception thresholds, as measured by SWM, 

in the digits of heavy manual workers not exposed to HTV 

was found to be significantly higher than that of office work-

ers. This is probably because of thickening or hardness of 

the skin, but sensory neuropathy from trauma to the hands 

cannot be excluded. To date clinicians have been advised to 

take 0.2 g-f as the cut-off from normal (Lawson 

2018

), but 


by so doing they may be misdiagnosing thick or hard skin as 

stage 2 neurological HAVS. From these data the cut-off from 

normal, or 95th percentile for male heavy manual workers 

should be 1.0 g-f, and for men ≥ 50 years 1.4 g-f. The latter 

threshold is in keeping with the 95th percentile of 2 g-f for 

heavy manual workers not exposed to HTV in Italy (Poole 

et al. 

2019


). Based on this, the regression line in Fig. 

2

 and 



the AUC analysis, the optimum time for practitioners to refer 

workers exposed to HTV to specialised centres for thermal 

and vibration sensory perception tests would appear to be 

when the mean SWM bend force in two digits of a hand, 

ideally not supplied by the same nerve, is ≥ 1.0 g-f. In this 

way, SWM can be used as a screening tool for the more 

sophisticated and expensive tests of thermal and vibra-

tion perception. Lowering the SWM threshold for referral 

would increase the sensitivity for identifying abnormalities 

of thermal and vibration perception but reduce its specificity. 

Lowering the threshold by one filament to ≥ 0.6 g-f would 

take into consideration the reliability of the method in that 

97% of intra-subject results were identical or differed by 

one filament.

The overlap in sensory perception of some office work-

ers and heavy manual workers may be because some of the 

heavy manual workers wore gloves, in which case their skin 

would be expected to be like that of an office worker. The 

absence of a significant difference in sensory perception by 

hand or digit indicates that these factors do not have to be 

taken into consideration when determining abnormality in 

workers with potential neuropathy. The increased sensitiv-

ity of the digits of women office workers < 30 years may 

have occurred by chance, but as this finding is biologically 

plausible it is likely to be a true finding.

The overlap in sensory perception thresholds of the heavy 

manual workers not exposed to HTV and workers with 

HAVS could be expected as some of the workers with HAVS 

had an early stage of HAVS with only neurological symp-

toms and some of the heavy manual workers would have 

had thick or hard skin or sub-clinically damaged hands. By 

comparison, reduced sensory perception has been reported 

in the feet where the highest SWM threshold was found over 

HAVS


Heavy manual

Office


0

.1

.2



.3

.4

.5



0

.1

.2



.3

.4

.5



0

.1

.2



.3

.4

.5



0.04 0.07 0.16

0.4


0.6

1

1.4



2

4

6



≥10

Proportion of digits

Sensory preception threshold (g-f)

Fig. 1   

Semmes–Weinstein monofilament sensory perception thresh-

olds of the digits of office workers, heavy manual workers and work-

ers with HAVS



Fig. 2   

Best fit Poisson regression line between Semmes Weinstein 

monofilament thresholds and the number of abnormal thermal and 

vibration perception thresholds in the hands of workers with HAVS




International Archives of Occupational and Environmental Health 

1 3


the heels and the lowest over the arches in keeping with 

the thickness and hardness of the skin (Strzalkowski et al. 

2015

). Recent work has shown quantitative sensory tests 



(QST) to be unaffected by the thickness of the skin in the 

digits (Lundstrom et al. 

2018

). Doctors have been recom-



mended to use SWM (HSE 

2005


), but their validity has been 

uncertain because of the absence of normative data and their 

unknown relationship with the results of QST. These ques-

tions have now been answered. Furthermore, most clinicians 

in a community clinic setting will have access to SWM, but 

not to QST, so the optimum time to refer a worker for QST 

is important to know.

A weighted kappa statistic of 0.63 for repeated intra-digit 

testing with SWM indicates moderate to substantial reli-

ability (Landis and Koch 

1977

). This was achieved when 



the same trained tester was used for each population. This 

is reassuring, but it should be noted that the technique for 

the use of SWM needs to be taught and practised. Higher 

reliability has been reported for the plantar surface of the 

great toe with coefficients > 0.9 with more complex testing 

algorithms lasting 20 min (Tracey et al. 

2012

). The method 



of application should be standardised, and the bend forces 

of the filaments validated at regular intervals. Fatigue and 

deterioration in bend force of the filaments with repeated 

use is less relevant in HAVS practice as normally only a 

few workers will be tested in any one day. Care needs to be 

taken to avoid stimulating nociceptors and the duration of 

each filament’s contact with the skin of a digit needs to be 

long enough to stimulate light touch and mechanoreceptors. 

Unless their use is well taught and practised, then the reli-

ability of results between practitioners is likely to be poor. 

More sophisticated methods of application can be used in a 

laboratory setting, such as the method of limits, or multiple 

applications of the same force, or mechanical methods of 

application, but such accuracy is probably unnecessary when 

SWM are being used to screen workers for more accurate 

testing.


The strength of this work is that relatively large popu-

lations of workers have been studied in a standardised 

way with the same SWM by the same investigators. It is 

not known how a different technique with a more complex 

algorithm would affect results, but the method described is 

quick and easy to use in a busy clinic setting and suitable 

for screening. We used the mean of the two digits with the 

highest SWM thresholds and compared them with the QST 

results for the index and little fingers because this is how 

clinical testing is undertaken. We do not believe that com-

paring SWM and QST results of only the index and little 

fingers would have made an appreciable difference to our 

results. As with all psychophysical methods, conscious bias 

cannot be eliminated, but these data should help with its 

identification. For the office workers and the workers with 

Table 5   

Sensitivity and 

specificity of SWM thresholds 

for detecting abnormalities 

of thermal and/or vibration 

perception in the same hands of 

workers with HAVS

a

 Mean threshold of the two digits with the highest thresholds



SWM threshold 

(g–f)


a

Abnormalities of thermal and vibration per-

ception in the hand

Abnormalities of thermal or vibration 

perception in the hand

Sensitivity (%)

Specificity (%)

Sensitivity (%)

Specificity (%)

 ≥ 0.15


100.00

2.11


100.00

4.26


 ≥ 0.2

100.00


4.21

100.00


8.51

 ≥ 0.3


100.00

23.16


94.81

38.30


 ≥ 0.4

100.00


30.53

89.61


44.68

 ≥ 0.5


93.10

41.05


81.82

57.45


 ≥ 0.6

89.66


53.68

74.03


72.34

 ≥ 0.7


89.66

58.95


72.73

80.85


 ≥ 0.8

86.21


62.11

70.13


85.11

 ≥ 1.0


79.31

64.21


67.53

89.36


 ≥ 1.2

68.97


71.58

55.84


91.49

 ≥ 1.4


65.52

77.89


50.65

97.87


 ≥ 1.5

62.07


78.95

48.05


97.87

 ≥ 1.7


62.07

80.00


46.75

97.87


 ≥ 2.0

51.72


84.21

37.66


97.87

 ≥ 2.5


41.38

87.37


31.17

100.00


 ≥ 2.7

34.48


87.37

28.57


100.00

 ≥ 3.0


31.03

88.42


25.97

100.00


 ≥ 3.5

13.79


91.58

15.58


100.00

 ≥ 4.0


10.34

92.63


12.99

100.00


 ≥ 10

3.45


96.84

5.19


100.00


 

International Archives of Occupational and Environmental Health

1 3

HAVS, SWM testing took place in controlled ambient tem-



peratures and humidity. Testing of the heavy manual workers 

took place at the workplace in portacabins where the ambi-

ent conditions could not be controlled, but we do not believe 

this made a substantial difference to our results. Based on 

this research, clinicians should be careful to purchase hand-

sets of SWM that include filaments with bend forces in the 

range 0.2–2.0 g-f and not a standard WEST handset in the 

range 0.07–200 g-f.



Conclusion

We have shown that heavy manual work increases the sen-

sory perception thresholds of the digits in the hands as meas-

ured by SWM. The intra-subject reliability of SWM is good 

when a simple forced-choice method is used by the same 

assessor. In workers with HAVS, abnormalities of thermal 

and vibration perception increase as the SWM threshold 

increases up to a bend force of 2 g-f. We recommend that 

workers exposed to HTV have their digits screened with 

SWM and are referred for QST when the mean SWM bend 

force in two digits is ≥ 0.6 g-f.


Yüklə 0,5 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə