The complex world of polysaccharides edited by Desiree Nedra Karunaratne



Yüklə 27,58 Mb.
Pdf görüntüsü
səhifə276/276
tarix31.10.2018
ölçüsü27,58 Mb.
#77257
1   ...   268   269   270   271   272   273   274   275   276

 

The Future of Synthetic Carbohydrate Vaccines: Immunological Studies on Streptococcus pneumoniae Type 14  629 

[21] Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, 

Donohoe K, Harris D, Murphy L, Quail MA, Samuel G, Skovsted IC, Kaltoft MS, Barrell 

B, Reeves PR, Parkhill J, Spratt BG. Genetic analysis of the capsular biosynthetic locus 

from all 90 pneumococcal serotypes. PLoS.Genet. 2006;2(3):e31 

[22] Mavroidi A, Aanensen DM, Godoy D, Skovsted IC, Kaltoft MS, Reeves PR, Bentley SD, 

Spratt BG. Genetic relatedness of the Streptococcus pneumoniae capsular biosynthetic loci. 

J.Bacteriol. 2007;189(21):7841-55. 

[23] Llull D, Garcia E, Lopez R. Tts, a processive beta-glucosyltransferase of Streptococcus 



pneumoniae, directs the synthesis of the branched type 37 capsular polysaccharide in 

Pneumococcus and other gram-positive species. J Biol.Chem 2001;276(24):21053-61. 

[24] Arrecubieta C, Lopez R, Garcia E. Type 3-specific synthase of Streptococcus pneumoniae 

(Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in 

pneumococcal strains of different serotypes. J Exp.Med 1996;184(2):449-55. 

[25] Breukels MA, Rijkers GT, Voorhorst-Ogink MM, Zegers BJ, Sanders LA. Pneumococcal 

conjugate vaccine primes for polysaccharide-inducible IgG2 antibody response in 

children with recurrent otitis media acuta. J.Infect.Dis. 1999;179(5):1152-6. 

[26] Rennels MB, Edwards KM, Keyserling HL, Reisinger KS, Hogerman DA, Madore DV, 

Chang I, Paradiso PR, Malinoski FJ, Kimura A. Safety and immunogenicity of 

heptavalent pneumococcal vaccine conjugated to CRM

197 


in United States infants. 

Pediatrics 1998;101(4 Pt 1):604-11. 

[27] Prymula R, Kriz P, Kaliskova E, Pascal T, Poolman J, Schuerman L. Effect of vaccination 

with pneumococcal capsular polysaccharides conjugated to Haemophilus influenzae-

derived protein D on nasopharyngeal carriage of Streptococcus pneumoniae and H. 

influenzae in children under 2 years of age. Vaccine 2009;28(1):71-8. 

[28] French N. Use of pneumococcal polysaccharide vaccines: no simple answers. J.Infect. 

2003;46(2):78-86. 

[29] Ada G, Isaacs D. Carbohydrate-protein conjugate vaccines. Clin.Microbiol.Infect. 

2003;9(2):79-85. 

[30] Kalka-Moll WM, Tzianabos AO, Bryant PW, Niemeyer M, Ploegh HL, Kasper DL. 

Zwitterionic polysaccharides stimulate T cells by MHC class II-dependent interactions. J 

Immunol. 2002;169(11):6149-53. 

[31] Choi YH, Roehrl MH, Kasper DL, Wang JY. A unique structural pattern shared by T-

cell-activating and abscess-regulating zwitterionic polysaccharides. Biochemistry 

2002;41(51):15144-51. 

[32] Karnezis TT, Smith A, Whittier S, Haddad J, Saiman L. Antimicrobial resistance among 

isolates causing invasive pneumococcal disease before and after licensure of 

heptavalent conjugate pneumococcal vaccine. PLoS One. 2009;4(6):e5965 

[33] Valenzuela MT, de Quadros C. Antibiotic resistance in Latin America: a cause for alarm. 

Vaccine 2009;27 Suppl 3:C25-C28 

[34] Vlieghe E, Phoba MF, Tamfun JJ, Jacobs J. Antibiotic resistance among bacterial 

pathogens in Central Africa: a review of the published literature between 1955 and 

2008. Int.J Antimicrob.Agents 2009;34(4):295-303. 



 

The Complex World of Polysaccharides 

630 

[35] Siira L, Rantala M, Jalava J, Hakanen AJ, Huovinen P, Kaijalainen T, Lyytikainen O, 



Virolainen A. Temporal trends of antimicrobial resistance and clonality of invasive 

Streptococcus pneumoniae isolates in Finland, 2002 to 2006. Antimicrob.Agents 

Chemother. 2009;53(5):2066-73. 

[36] Vila-Corcoles A, Bejarano-Romero F, Salsench E, Ochoa-Gondar O, de DC, Gomez-

Bertomeu F, Raga-Luria X, Cliville-Guasch X, Arija V. Drug-resistance in Streptococcus 



pneumoniae isolates among Spanish middle aged and older adults with community-

acquired pneumonia. BMC.Infect.Dis. 2009;9:36 

[37] Imai S, Ito Y, Ishida T, Hirai T, Ito I, Maekawa K, Takakura S, Iinuma Y, Ichiyama S, 

Mishima M. High prevalence of multidrug-resistant Pneumococcal molecular 

epidemiology network clones among Streptococcus pneumoniae isolates from adult 

patients with community-acquired pneumonia in Japan. Clin.Microbiol.Infect. 2009; 

[38] Shibl AM. Distribution of serotypes and antibiotic resistance of invasive pneumococcal 

disease isolates among children aged 5 years and under in Saudi Arabia (2000-2004). 

Clin.Microbiol.Infect. 2008;14(9):876-9. 

[39] Yang F, Xu XG, Yang MJ, Zhang YY, Klugman KP, McGee L. Antimicrobial 

susceptibility and molecular epidemiology of Streptococcus pneumoniae isolated from 

Shanghai, China. Int.J.Antimicrob.Agents 2008;32(5):386-91. 

[40] Gottlieb T, Collignon PJ, Robson JM, Pearson JC, Bell JM. Prevalence of antimicrobial 

resistances in Streptococcus pneumoniae in Australia, 2005: report from the Australian 

Group on Antimicrobial Resistance. Commun.Dis.Intell. 2008;32(2):242-9. 

[41] Barocchi MA, Censini S, Rappuoli R. Vaccines in the era of genomics: the pneumococcal 

challenge. Vaccine 2007;25(16):2963-73. 

[42] O'Brien KL, Hochman M, Goldblatt D. Combined schedules of pneumococcal conjugate 

and polysaccharide vaccines: is hyporesponsiveness an issue? Lancet Infect.Dis. 

2007;7(9):597-606. 

[43] Singleton RJ, Hennessy TW, Bulkow LR, Hammitt LL, Zulz T, Hurlburt DA, Butler JC, 

Rudolph K, Parkinson A. Invasive pneumococcal disease caused by nonvaccine 

serotypes among alaska native children with high levels of 7-valent pneumococcal 

conjugate vaccine coverage. JAMA 2007;297(16):1784-92. 

[44] Douglas RM, Paton JC, Duncan SJ, Hansman DJ. Antibody response to pneumococcal 

vaccination in children younger than five years of age. J Infect.Dis. 1983;148(1):131-7. 

[45] Ortqvist A, Hedlund J, Burman LA, Elbel E, Hofer M, Leinonen M, Lindblad I, Sundelof 

B, Kalin M. Randomised trial of 23-valent pneumococcal capsular polysaccharide 

vaccine in prevention of pneumonia in middle-aged and elderly people. Swedish 

Pneumococcal Vaccination Study Group. Lancet 1998;351(9100):399-403. 

[46] Teshale EH, Hanson D, Flannery B, Phares C, Wolfe M, Schuchat A, Sullivan P. 

Effectiveness of 23-valent polysaccharide pneumococcal vaccine on pneumonia in HIV-

infected adults in the United States, 1998--2003. Vaccine 2008;26(46):5830-4. 

[47] Veras MA, Enanoria WT, Castilho EA, Reingold AL. Effectiveness of the polysaccharide 

pneumococcal vaccine among HIV-infected persons in Brazil: a case control study. 

BMC.Infect.Dis. 2007;7:119 




 

The Future of Synthetic Carbohydrate Vaccines: Immunological Studies on Streptococcus pneumoniae Type 14  631 

[48] Whitney CG, Farley MM, Hadler J, Harrison LH, Bennett NM, Lynfield R, Reingold A, 

Cieslak PR, Pilishvili T, Jackson D, Facklam RR, Jorgensen JH, Schuchat A. Decline in 

invasive pneumococcal disease after the introduction of protein-polysaccharide 

conjugate vaccine. N.Engl.J.Med. 2003;348(18):1737-46. 

[49] Pavia M, Bianco A, Nobile CG, Marinelli P, Angelillo IF. Efficacy of pneumococcal 

vaccination in children younger than 24 months: a meta-analysis. Pediatrics 

2009;123(6):e1103-e1110 

[50] Isaacman DJ, McIntosh ED, Reinert RR. Burden of invasive pneumococcal disease and 

serotype distribution among Streptococcus pneumoniae isolates in young children in 

Europe: impact of the 7-valent pneumococcal conjugate vaccine and considerations for 

future conjugate vaccines. Int.J.Infect.Dis. 2009;14(3):e197-209. 

[51] Knuf M, Szenborn L, Moro M, Petit C, Bermal N, Bernard L, Dieussaert I, Schuerman L. 

Immunogenicity of routinely used childhood vaccines when coadministered with the 

10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate 

vaccine (PHiD-CV). Pediatr.Infect.Dis.J. 2009;28(4 Suppl):S97-S108 

[52] Bermal N, Szenborn L, Chrobot A, Alberto E, Lommel P, Gatchalian S, Dieussaert I, 

Schuerman L. The 10-valent pneumococcal non-typeable Haemophilus influenzae 

protein D conjugate vaccine (PHiD-CV) coadministered with DTPw-HBV/Hib and 

poliovirus vaccines: assessment of immunogenicity. Pediatr.Infect.Dis.J. 2009;28(4 

Suppl):S89-S96 

[53] Meng C, Lin H, Huang J, Wang H, Cai Q, Fang L, Guo Y. Development of 5-valent 

conjugate pneumococcal protein A - Capsular polysaccharide pneumococcal vaccine 

against invasive pneumococcal disease. Microb.Pathog. 2009;47(3):151-6. 

[54] Bogaert D, de Groot R, Hermans PWM. Streptococcus pneumoniae colonisation: the key to 

pneumococcal disease . Lancet.Infect.Dis. 2004;4:144-54. 

[55] Xin W, Li Y, Mo H, Roland KL, Curtiss R, III. PspA family fusion proteins delivered by 

attenuated Salmonella enterica serovar Typhimurium extend and enhance protection 

against Streptococcus pneumoniae. Infect.Immun. 2009;77(10):4518-28. 

[56] Francis JP, Richmond PC, Pomat WS, Michael A, Keno H, Phuanukoonnon S, Nelson JB, 

Whinnen M, Heinrich T, Smith WA, Prescott SL, Holt PG, Siba PM, Lehmann D, van 

den Biggelaar AH. Maternal antibodies to pneumolysin, but not pneumococcal surface 

protein A, delay early pneumococcal carriage in high-risk Papua New Guinean infants. 

Clin.Vaccine Immunol. 2009;16(11):1633-8. 

[57] Ljutic B, Ochs M, Messham B, Ming M, Dookie A, Harper K, Ausar SF. Formulation, 

stability and immunogenicity of a trivalent pneumococcal protein vaccine formulated 

with aluminum salt adjuvants. Vaccine 2012;Epub ahead of print 

[58] Pozsgay V. Recent developments in synthetic oligosaccharide-based bacterial vaccines. 

Curr.Top.Med Chem 2008;8(2):126-40. 

[59] Jansen WT, Snippe H. Short-chain oligosaccharide protein conjugates as experimental 

pneumococcal vaccines. Indian.J.Med.Res. 2004;119:7-12. 

[60] Benaissa-Trouw B, Lefeber DJ, Kamerling JP, Vliegenthart JF, Kraaijeveld K, Snippe H. 

Synthetic polysaccharide type 3-related di-, tri-, and tetrasaccharide- CRM

197

 conjugates 




 

The Complex World of Polysaccharides 

632 

induce protection against Streptococcus pneumoniae type 3 in mice. Infect.Immun. 



2001;69(7):4698-701. 

[61] Plante OJ, Palmacci ER, Seeberger PH. Automated solid-phase synthesis of 

oligosaccharides. Science 2001;291(5508):1523-7. 

[62] Saksena R, Ma X, Wade TK, Kovác P, Wade WF. Length of the linker and the interval 

between immunizations influences the efficacy of Vibrio cholerae O1,Ogawa 

hexasaccharide neoglycoconjugates. FEMS Immunol.Med.Microbiol. 2006;47:116-28. 

[63] Saksena R, Ma X, Wade TK, Kovac P, Wade WF. Effect of saccharide length on the 

immunogenicity of neoglycoconjugates from synthetic fragments of the O-SP of Vibrio 



cholerae O1, serotype Ogawa. Carbohydr.Res. 2005;340:2256-69. 

[64] Bongat AF, Saksena R, Adamo R, Fujimoto Y, Shiokawa Z, Peterson DC, Fukase K, 

Vann WF, Kovac P. Multimeric bivalent immunogens from recombinant tetanus toxin 

H(C) fragment, synthetic hexasaccharides, and a glycopeptide adjuvant. Glycoconj.J. 

2009;27(1):69-77. 

[65] Phalipon A, Tanguy M, Grandjean C, Guerreiro C, Belot F, Cohen D, Sansonetti PJ, 

Mulard LA. A synthetic carbohydrate-protein conjugate vaccine candidate against 

Shigella flexneri 2a infection. J.Immunol. 2009;182(4):2241-7. 

[66] Said HF, Phalipon A, Tanguy M, Guerreiro C, Belot F, Frisch B, Mulard LA, Schuber F. 

Rational design and immunogenicity of liposome-based diepitope constructs: 

application to synthetic oligosaccharides mimicking the Shigella flexneri 2a O-antigen. 

Vaccine 2009;27(39):5419-26. 

[67] Schofield L, Hewitt MC, Evans K, Siomos MA, Seeberger PH. Synthetic GPI as a 

candidate anti-toxic vaccine in a model of malaria. Nature 2002;418(6899):785-9. 

[68] Jeon I, Lee D, Krauss IJ, Danishefsky SJ. A new model for the presentation of tumor-

associated antigens and the quest for an anticancer vaccine: a solution to the synthesis 

challenge via ring-closing metathesis. J.Am.Chem.Soc. 2009;131(40):14337-44. 

[69] de Velasco EA, Verheul AF, Veeneman GH, Gomes LJ, van Boom JH, Verhoef J, Snippe 

H. Protein-conjugated synthetic di- and trisaccharides of pneumococcal type 17F exhibit 

a different immunogenicity and antigenicity than tetrasaccharide. Vaccine 

1993;11(14):1429-36. 

[70] Jansen WT, Verheul AFM, Veeneman GH, van Boom JH, Snippe H. Revised 

interpretation of the immunological results obtained with pneumococcal 

polysaccharide 17F derived synthetic di-, tri- and tetrasaccharide conjugates in mice 

and rabbits. Vaccine 2002;20:19-21. 

[71] de Velasco EA, Verheul AF, van Steijn AM, Dekker HA, Feldman RG, Fernandez IM, 

Kamerling JP, Vliegenthart JF, Verhoef J, Snippe H. Epitope specificity of rabbit 

immunoglobulin G (IgG) elicited by pneumococcal type 23F synthetic oligosaccharide- 

and native polysaccharide-protein conjugate vaccines: comparison with human anti-

polysaccharide 23F IgG. Infect.Immun. 1994;62(3):799-808. 

[72] Jansen WT, Hogenboom S, Thijssen MJL, Kamerling JP, Vliegenthart JFG, Verhoef J, 

Snippe H, Verheul AFM. Synthetic 6B di-, tri-, and tetrasaccharide-protein conjugates 

contain pneumococcal type 6A and 6B common and 6B-specific epitopes that elicit 

protective antibodies in mice. Infect.Immun. 2001;69(2):787-93. 




 

The Future of Synthetic Carbohydrate Vaccines: Immunological Studies on Streptococcus pneumoniae Type 14  633 

[73] Safari D, Dekker HA, Joosten JA, Michalik D, de Souza AC, Adamo R, Lahmann M, 

Sundgren A, Oscarson S, Kamerling JP, Snippe H. Identification of the smallest 

structure capable of evoking opsonophagocytic antibodies against Streptococcus 

pneumoniae type 14. Infect.Immun. 2008;76(10):4615-23. 

[74] Mawas F, Niggemann J, Jones C, Corbel MJ, Kamerling JP, Vliegenthart JFG. 

Immunogenicity in a mouse model of a conjugate vaccine made with a synthetic single 

repeating unit of type 14 pneumococcal polysaccharide coupled to CRM

197



Infect.Immun. 2002;70(9):5107-14. 



[75] Lindberg B, Lonngren J, Powel DA. Structural studies on the specific type 14 

pneumococcal polysaccharide. Carbohydr.Res. 1977;58:177-86. 

[76] Joosten JA, Lazet BJ, Kamerling JP, Vliegenthart JF. Chemo-enzymatic synthesis of tetra-

, penta-, and hexasaccharide fragments of the capsular polysaccharide of Streptococcus 



pneumoniae type 14. Carbohydr.Res 2003;338(23):2629-51. 

[77] Joosten JA, Kamerling JP, Vliegenthart JF. Chemo-enzymatic synthesis of a tetra- and 

octasaccharide fragment of the capsular polysaccharide of Streptococcus pneumoniae type 

14. Carbohydr.Res 2003;338(23):2611-27. 

[78] 

Michalik D, Vliegenthart JFG, Kamerling JP. Chemoenzymic synthesis of 



oligosaccharide fragments of the capsular polysaccharide of Streptococcus pneumoniae 

type 14. J.Chem.Soc., Perkin Trans.1 2002;1973-81. 

[79] Sundgren A, Lahmann M, Oscarson S. Block synthesis of Streptococcus pneumoniae type 

14 capsular polysaccharide structures. J.Carbohydr.Chem. 2005;24(4):379-91. 

[80] Safari D, Dekker HA, Rijkers G, van der Ende A, Kamerling JP, Snippe H. The immune 

response to group B streptococcus type III capsular polysaccharide is directed to the -

Glc-GlcNAc-Gal- backbone epitope. Glycoconj.J. 2011;28:557-67. 

[81] Guttormsen HK, Baker CJ, Nahm MH, Paoletti LC, Zughaier SM, Edwards MS, Kasper 

DL. Type III group B streptococcal polysaccharide induces antibodies that cross-react 

with Streptococcus pneumoniae type 14. Infect.Immun. 2002;70(4):1724-38. 

[82] Kadirvelraj R, Gonzalez-Quteirino J, Foley BL, Beckham ML, Jennings HJ, Foote S, Ford 

MG, Woods RJ. Understanding the bacterial polysaccharide antigenicity of Streptococcus 



agalactiae versus Streptococcus pneumoniae. Proc.Natl.Acad.Sci.USA 2007;103(21):8149-54. 

[83] Jennings HJ, Lugowski C, Kasper DL. Conformational aspects critical to the 

immunospecificity of the type III group B streptococcal polysaccharide. Biochemistry 

1981;20(16):4511-8. 

[84] Miernyk KM, Butler JC, Bulkow LR, Singleton RJ, Hennessy TW, Dentinger CM, Peters 

HV, Knutsen B, Hickel J, Parkinson AJ. Immunogenicity and reactogenicity of 

pneumococcal polysaccharide and conjugate vaccines in alaska native adults 55-70 

years of age. Clin.Infect.Dis. 2009;49(2):241-8. 

[85] Safari D, Dekker HA, de Jong B, Rijkers G, Kamerling JP, Snippe H. Antibody- and cell-

mediated immune responses to a synthetic oligosaccharide conjugate vaccine after 

booster immunization. Vaccine 2011;29(38):6498-504. 

[86] Lefeber DJ, Benaissa-Trouw B, Vliegenthart JFG, Kamerling JP, Jansen WTM, 

Kraaijeveld K, Snippe H. Th1-directing adjuvants increase the immunogenicity of 



 

The Complex World of Polysaccharides 

634 

oligosaccharide-protein conjugate vaccines related to Streptococcus pneumoniae type 3. 



Infect.Immun. 2003;71(12):6915-20. 

[87] Safari D, Dekker HA, Rijkers G, Snippe H. Codelivery of adjuvants at the primary 

immunization site is essential for evoking a robust immune response to 

neoglycoconjugates. Vaccine 2011;29(4):849-54. 



Document Outline

  • Preface  The Complex World of Polysaccharides
  • Section 1 Sources and Biological Properties of Polysaccharides
  • 01  Is Chitosan a New Panacea? Areas of Application
  • 02  Yeast (Saccharomyces cerevisiae) Glucan Polysaccharides – Occurrence, Separation and Application
  • 03  Mechanisms of O-Antigen Structural Variation of Bacterial Lipopolysaccharide (LPS)
  • 04  Exopolysaccharide Biosynthesis in Rhizobium leguminosarum: From Genes to Functions
  • 05  Capsular Polysaccharides Produced by the Bacterial Pathogen Burkholderia pseudomallei
  • 06  Polysaccharides from Larch Biomass
  • 07  Antiviral Levans from Bacillus spp. Isolated from Honey
  • 08  Lichen Polysaccharides
  • Section 2 Physical and Chemical Characteristics of Polysaccharides
  • 09  The Molecular Structure and Conformational Dynamics of Chitosan Polymers: An Integrated Perspect
  • 10  Concept of Template Synthesis of Proteoglycans
  • 11  Coupled Mass Spectrometric Strategies for the Determination of Carbohydrates at Very Low Concent
  • 12  Diatom Polysaccharides: Extracellular Production, Isolation and Molecular Characterization
  • 13  Exopolysaccharides of the Biofilm Matrix: A Complex Biophysical World
  • Section 3 Applications in the Food Industry
  • 14  Polysaccharide-Protein Interactions and Their Relevance in Food Colloids
  • 15  Chitosan: A Bioactive Polysaccharide in Marine-Based Foods
  • 16  Polysaccharides as Carriers and Protectors of Additives and Bioactive Compounds in Foods
  • 17  Dietary Fiber and Availability of Nutrients: A Case Study on Yoghurt as a Food Model
  • 18  Plant Biotechnology for the Development of Design Starches
  • Section 4 Applications in the Pharmaceutical Industry
  • 19  Bioactive Polysaccharides of American Ginseng Panax quinquefolius L. in Modulation of Immune Fun
  • 20  Polysaccharides from Red Algae: Genesis of a Renaissance
  • 21  1,3--Glucans: Drug Delivery and Pharmacology
  • 22  Complexes of Polysaccharides and Glycyrrhizic Acid with Drug Molecules − Mechanochemical Synthes
  • 23  The Chitosan as Dietary Fiber: An in vitro Comparative Study of Interactions with Drug and Nutri
  • 24  The Future of Synthetic Carbohydrate Vaccines: Immunological Studies on Streptococcus pneumoniae

Yüklə 27,58 Mb.

Dostları ilə paylaş:
1   ...   268   269   270   271   272   273   274   275   276




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə