Preface to the lecture, 1



Yüklə 4,22 Mb.
Pdf görüntüsü
səhifə49/180
tarix02.01.2018
ölçüsü4,22 Mb.
#19615
1   ...   45   46   47   48   49   50   51   52   ...   180

158

 

"weak interaction"



 

A strong interaction doesn't exist. The electric field in 

the proximity of the proton goes to zero within the range 

which is determined with measuring techniques.

 

A weak interaction doesn't exist. That interaction only 



is a special case of the electromagnetic interaction 

which appears in a weakened form. ________________

 

XII: Why does the proton have approximately 3 



times the magnetic moment which can be 

expected for reason of the only single charge?

 

(3 elementary vortices)



 

XIII: Why does the neutron as an uncharged 

particle anyway have a magnetic moment?

 

(Structure of the n°)



 

XIV: What owes the atomic nucleus, which con- 

sists of like charges, its stability? 

(Course of the field of the p

+

, instead of "strong interaction")



 

XV: Why does the free neutron decay, although it 

is stable as a particle of the nucleus? _________

 

(Interaction with neutrinos)



 

XVI: Why do neutrinos nevertheless participate in 

the "weak interaction", although they have no 

mass and no charge? ________________________

 

(Oscillating charge)



 

XVII: How can be given reasons for the finite range

 

______


of the "weak interaction"?

 

(Reaction cross-section for particle decay)



 

Fig. 7.13:    Further key questions of quantum physics 

(Continuation of figures 4.4 and 6.13)

 



proof

 

159



 

7.13 "Weak interaction" 

Let's now look again at the -decay of the neutron, in which a neutrino is used. But this 

by no means will be a process of the weak interaction. Instead will neutrinos, contrary to 

the textbook opinion, participate in the electromagnetic interaction. They after all are one 

moment positively charged and the next moment negatively charged. With slow-acting 

gauges this it is true can't be proven, because the interaction is zero on the average. But 

this charged oscillating vortex ring can exert a considerable effect while approaching a 

neutron, which is based solely on the electromagnetic interaction.

 

The neutron is stimulated to synchronous oscillations of its own by the high-frequency 



alternating field of the neutrino, until it in the case of the collision releases the bound 

electron, which takes up the energy provided by the neutrino and transports it away. The 

interaction obviously is only very weak due to the oscillation. But a physical 

independency of it has to be disputed.

 

The finite range, which is given in this context, indicates the reaction cross-section around 



the n°-particle, within which the "crash" and as a consequence the -decay occurs. This 

range is considerable larger as the particle itself. The electromagnetic interaction for such 

small distances after all is so violent, even if it only occurs in pulses, that the neutrino is 

thrown out of its path and can fly directly towards the neutron.

 

Perhaps we now understand also the  -decay of the myon. It actually were to be expected 



that without outside disturbance an absolute stability could exist because of the ideal 

symmetry of the

  On our planet we however are in every second bombarded with 

approx. 66 milliard (billion) neutrinos per cm

2

 



. Obviously it takes 2,2    on the average 

till a neutrino flies past a myon so close that it decays. In doing so it stimulates the 

outside elementary vortex to violent oscillations by trying to synchronize it. In this case 

the electron-neutrino carries away with it the two outer, and therefore weaker bound, 

elementary vortices of the myon, which meanwhile are oscillating synchronously. The 

innermost vortex, an electron e

-

, is left behind. The decay of the myon which takes place 



with a probability of almost 100 % reads:

 

 (7.16)



 

Thus a different neutrino 

  is formed which can be distinguished from the v

e

 and is 



called myon-neutrino since it forms from the

  Actually it even has a similar structure of 

three shells, as is shown in fig. 7.5. But the vortex centre is open and the particle isn't 

stationary anymore. In the picture now only a momentarily state is shown, in which the   

appears green on the outside and red in its open centre. As already for the    oscillates also 

here the inside to the outside and vice versa, this time merely as a packet of three shells, so 

that also this particle shows all the typical neutrino properties discussed for the example of 

the 


 

The for potential vortices typical and already discussed phenomenon of transport here has 

an effect. In particular in connexion with vortex rings this property is known from 

hydrodynamics. It thus can be observed, how vortex rings bind matter and carry away with 

them. Because the neutrino is not quantized, it neither is restricted with regard to its ability 

to transport elementary vortices. Consequently even bigger configurations are 

conceivable, like configurations of 5 shells, 7 shells etc..

 

:      "Zeugen aus der Sonne", VDI-Nachrichten Nr. 45 vom 9.11.90, Seite 26

 



160

 

tau particle



 

 

Fig. 7.14: Tau-neutrino and tau particle 




Yüklə 4,22 Mb.

Dostları ilə paylaş:
1   ...   45   46   47   48   49   50   51   52   ...   180




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə