Preface to the lecture, 1



Yüklə 4,22 Mb.
Pdf görüntüsü
səhifə50/180
tarix02.01.2018
ölçüsü4,22 Mb.
#19615
1   ...   46   47   48   49   50   51   52   53   ...   180

161

 

7.14 Tau particle



 

In the table of the leptons after the e

-

 and the   as the next particle the tau particle   is 



found with its accompanying neutrino

The obvious solution for the tau particle is the 

structure of five shells, as is shown in fig. 7.14a. With that the electron would have 

another particularly heavy relative with otherwise very similar properties. 

For the myon the neutrino was stable, the particle itself however instable. We after all 

huve explained the particle decay as a consequence of an outside disturbance, and 

disturbances always are based on interactions. Correspondingly should, with the small 

possibility for an interaction, also the neutrino   of the tau particle have a better stability 

than the particle   

itself. 


Without doubt this structure of 5 shells fulfils all known quantum properties like spin, 

charge etc. Merely the check of the mass is still due. This we now want to calculate for the 

structure shown in fig. 7.14a.

 

 



(7.17)

 

 



(7.17*)

 

But the for the tau particle measured value is considerable higher!



 

Even if this structure is the only possible in the case of the neutrino    for reason of the 

complete symmetry, will the tau particle however change its structure by itself if another 

structure exists, which is more stable, thus in which the particle can take a bigger mass. 

Such a maximum provides the structure shown in fig. 7.14b after checking all possible 

configurations with five elementary vortices:

 

 

(7.18)



 

 

(7.18*)



 

This value now lies 8% above the measurement values. It would be obvious, if unbound 

tau particles predominantly would take the structure shown in fig. 7.14b. The remaining 

error becomes explicable, if a very small number of tau particles in the lighter structure 

according to fig. 7.14a are involved with a correspondingly smaller probability.

 

The enormous variety of kinds of decay, and not a single one of the dominating ones has a 



probability of over 50%, makes it more difficult for us, to be able to directly infer the 

inner structure of a particle from the decay products. It nevertheless should be mentioned 

that after all 35% of all decays take place by taking up and using a neutrino    or 

 

entirely in accordance with the model of the myon decay (equation 7.16).



 


162

 

pions



 

 

7.15      Table of vortices of the calculated leptons and mesons 



compared with measurement values (Part 1). 


proof

 

163



 

7.l5 Pions 

Unlike the leptons, which we could derive and calculate fairly completely, the mesons 

don't have a half-integer spin. With this characteristic property they therefore can't 

represent an individually overlapped elementary particle and they probably will consist of 

the amassing in pairs of individual configurations of potential vortices. This kind of bond 

can't be particularly tight. Consequently we don't know any stable mesons.

 

The most important basic building part of the mesons we have got to know over the 



positronium in fig. 7.3. It necessarily has to amass to another particle, otherwise it 

annihilates under emission of a  -quanta, as already mentioned. This 

particle, as it will 

be named here, has the mass of:

 

 (7.19)


 

which only can be determined arithmetically. As a partner, to which the -particle can 

amass, first of all another -particle should be considered. Because both partner will 

rotate against one another, this new particle would not have a spin and moreover would be 

uncharged. The mass now would be twice as big with:

 

 (7.19*)



 

But the two  -particles will come very close together and mutually feel the local, in the 

same direction orientated, distribution of the field, which will lead to a weakening of the

 

field and as a consequence to a slight reduction of the mass.



 

With these properties it probably concerns the uncharged pion

 This model concept

 

finds an excellent confirmation in the two possible kinds of decay, which can be regarded 



as equivalent:

 

 with a probability of 99% 



and

 

 with a probability of 1%



 

Also in the case of the charged pion

the observable decay offers a big help, which will 

take place with a frequency of almost 100 %:

 

 

The equation doesn't state anything about the fact, if a neutrino v



e

 is used in the process. 

But it points at the circumstance that the partner of the  -particle for the 

 most likely is 

a myon 

 The mass will be smaller than the sum of both building parts:



 

(204+136) * m

e

   =   340 * m



e

.

 




164

 

table of vortices of the mesons



 

 

Some compound configurations 



 

Fig. 7.16:  Table of vortices of the calculated leptons and 

mesons compared with measurement values (Part 2). 



proof

 

165



 

7.16 Table of vortices of the mesons

 

The numerous kinds of decay for K-mesons suggest that these strange particles will 



consist of various combinations of amassed together and in pairs rotating

  and 


 

particles. The possibilities of combination now already have increased in such a way that 

for every kaon and other mesons several solutions can be proposed. To avoid unfounded 

speculations, only a few clues will be given.

 

Besides the  -particles also heavier arrangements should be considered as partner for the 



spin and as a building part for kaons and other mesons.

 

If for instance a   is overlapped by a    then this particle has an arithmetically 



determined mass of 918 m

e

. It therefore can concern a building part of the uncharged kaon



 

The likewise with three    formed configuration of 6 shells however, if it actually would 

staystable for the duration of a measurement, would have the mass of 3672 electron 

masses


.

 



A very much better detectability must be attributed to the configuration of 4 shells which 

consists of two

 so to speak a heavy relative of the   and the

 It among others should

 

be able to decay like a



With this property and with an arithmetically determined mass 

of 1088 m

e

 it actually only can concern the 



meson. Solely according to the numeric

 

value the  -meson could also consist of four 



mesons; but the decay in only two light

 

quants speaks against it.



 

The kaon-puzzle in addition is made more difficult by the spontaneously possible ability 

to change of the involved  -particles during a process of decay, as is made clear by the 

numerous kinds of decay. These dependent pion halves can be "swallowed" or "spit out" 

by neutrinos in the process, they can form from incident light or be emitted as photons and 

eventually they even can break up in their individual parts.

 

In fig. 7.16 the possible configurations of potential vortices are sketched and the 



respective, according to the new theory calculated, mass is given. If above that the other 

decay products and quantum properties, which can be given for the vortex structures, are 

added, like e.g. charge, spin and if need be magnetic moment, then an assignment without 

doubts to the until now only from measurements known elementary particles is possible. 

In order to better be able to assess the efficiency of the potential vortex theory, the 

measurement values are compared to the calculated values.

 

Some terms are put in brackets, because it can be assumed that the calculated part only 



concerns the dominating part, to which further or other small configurations of vortices 

will amass for reason of its high mass. Correspondingly should the mass in that case be 

corrected slightly.

 

: It could e.g. concern the D°-meson.

 



Yüklə 4,22 Mb.

Dostları ilə paylaş:
1   ...   46   47   48   49   50   51   52   53   ...   180




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə