Preface to the lecture, 1



Yüklə 4,22 Mb.
Pdf görüntüsü
səhifə47/180
tarix02.01.2018
ölçüsü4,22 Mb.
#19615
1   ...   43   44   45   46   47   48   49   50   ...   180

150

 

,,strong interaction"



 

 

Fig. 7.8:    The proton and the electric field of the three 



elementary vortices in x-, y- and z-direction

 



proof

 

151



 

7.8 "Strong interaction"

 

A central question of nuclear physics concerns the forces which keep the atomic nucleus,



 

which consists of many neutrons and protons, together and give it its very good stability in

 

spite of the like positive charge (key question XIV fig. 7.13).



 

According to today's textbook opinion (course of the field indicated with a in fig. 7.8) the 

forces of repulsion between the individual protons increase further as the distance gets 

smaller, to obtain immense values within the nucleus. They theoretically had to be 

overcome by new and unknown nuclear forces. Therefore physicists assume the 

hypothesis of a "strong interaction". But they are mistaken. 

The answer to this open question is provided by the course of the field (b) for the proton,

 

sketched in fig. 7.8. We see that the electric field at first indeed still increases if we 



approach the proton, but in the proximity it contrary to all expectations decreases again 

until it is zero. With that then also any force of repulsion has vanished! But the course of 

the field follows without compulsion from the overlap of the three individual elementary 

vortex fields.

 

The field direction in the z-direction even is reversed! In this topsy-turvy world, in theory, 



an electromagnetic force of attraction between two like charged protons can occur. We 

conclude:

 

A strong interaction doesn't exist at all. The usually given values for "range" and 



"strength" just represent a misinterpretation. The hatched drawn area marks the difference 

which is misinterpreted by quantum physics. The model concept over and above that 

answers another mysterious property of the proton. As an electrically charged particle with 

a spin it first of all should form a magnetic moment for reason of the rotating charge. But 

until now the measurable order of magnitude couldn't be explained.

 

7.9 Magnetic moment of the proton



 

If the inner positrons rotate around each other with oppositely pointing spin, then the 

magnetic field line is already closed within the particle and no effect in x- or y-direction is 

observable from the outside.

 

As pair they however still can rotate together around the z-axis and they'll do that. The 



overlapping electron for reason of its rotation of its own will likewise build up a magnetic 

dipole moment along its axis of rotation. It also will align its axis in the z-direction, so that 

now all three elementary vortices have one field axis. Being comparable to individually 

"elementary magnets" aligned in the same direction they produce a triple magnetic 

moment (key question XII fig. 7.13).

 

If we namely would start with a single positively charged body according to the theory of 



quantum mechanics, then we would have expected the value of the nuclear magneton

  p


as the magnetic moment for the proton   p

m

   = 


  . Opposite to that provide

 

experiments with protons the approx. threefold value as already predictable by the new 



vortex theory. In addition does the direction of the vector p

mp

 correspond with the spin- 



axis, so as if the proton were negatively charged. The reason for that is that only the 

outermost elementary vortex determines the spin of the particle, and that is actually a 

negatively charged electron! Also this excellent agreement in the case of the proton can be 

judged as proof for the correctness of the vortex model.

 

:     The nuclear magneton has the value of: p

mk

 = 5,0508 • 10



-27

 Am


2

 



152

 

structure of the neutron



 

 

Fig. 7.10:   The neutron with magnetic dipole field H



 


proof

 

153



 

7.10 Structure of the neutron

 

Until now could not be solved, why despite its missing charge also the neutron n° has a 



magnetic moment. The experimentally determined value is approx. the double of the 

nuclear magneton. Further was with measuring techniques an only 0,14% bigger mass 

with regard to the proton determined. The difference is approximately two and a half 

electron masses. And how reads the answer in the view of the potential vortex theory? 

It is obvious that a positively charged proton and a negatively charged electron mutually 

attract and amass together (fig. 7.10a). A pair annihilation can't occur, because the 

electron, which jackets both positrons, prevents this. The formation of an outer shell is not 

permitted by the high stability of the proton. It would have to be a positron shell, which 

instead of neutrality would produce a double positive charge. Conceivable is however the 

configuration, in which one of the two e

+

 of the proton takes up the e



-

 in its inside and 

overlaps it (fig. 7.10b).

 

At first appears the amassing of p



+

 and e


-

 to be the obvious answer to the structure of the

 

neutron also in view of the small increase in mass. Since both elementary particles (p



+

 and


 

e

-



) have a spin, will they align their axes of rotation antiparallelly and rotate against one

 

another, exactly like an electron pair. But we now have unequal conditions: the proton



 

brings the triple magnetic moment, the electron however only the single, and its field line

 

will be closed by the proton. The difference which remains is the measurable double



 

nuclear magneton,  with which key  question XIII  (fig.   7.13)  would be  answered

 

exhaustively.



 

This structure is shown in fig. 7.10a and has as rest mass the by only one electron mass

 

increased proton mass, but it will deviate from this value, when the unequal partner come



 

closer. Doing so the electron will be more strongly compressed by the heavier proton as

 

vice versa.



 

Mass,  magnetic moment and charge thus correspond to a large extent with the

 

measurement values. Problems are seen concerning the spin and the stability.



 

Set of problems concerning spin: both the e

-

 and the p



+

 have a half-integer spin, for which

 

reason this configuration should have an integer spin.



 

Set of problems concerning stability: the neutron decays as is well-known in a p

+

 and an


 

e

-



 , but this object should be shorter-lived as determined by experiments. If namely the

 

partner come each other very close, then the field strength of the p



+

, contrary to

 

expectation, doesn't increase but decreases, as is shown in fig. 7.8. The e



-

 therefore can

 

only be bound very, very loosely; in z-direction it even will be repelled!



 

For these reasons is the open structure, which is shown in fig. 7.10a, not feasible as an

 

isolated elementary particle, but only in a spatially extended network, like it is present in



 

an atomic nucleus. In this case the neutron is, as is well-known, lighter by the mass defect,

 

which is interpreted as binding energy.



 

Possibly it only concerns an intermediate stage. The heavier final product of the n° then

 

could look like is shown in fig. 7.10b. For this version the line of the magnetic field



 

already is closed partly within the particle, so that also here the approx. double nuclear

 

magneton remains as a rest with a sense of orientation, as if the neutron were negatively



 

charged.


 

Without charge and with the 1/2 spin it in this configuration fulfils all important quantum

 

properties of the neutron, even that of the stability.



 


Yüklə 4,22 Mb.

Dostları ilə paylaş:
1   ...   43   44   45   46   47   48   49   50   ...   180




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə