Honoring Epimenides of Crete \(±Δx\): From Quantum Paradoxes, through Weak Measurements, to the Nature of Time



Yüklə 204,66 Kb.
Pdf görüntüsü
səhifə7/7
tarix25.11.2017
ölçüsü204,66 Kb.
#12422
1   2   3   4   5   6   7

Bell's inequality. Therefore, enabling to interpret the future state vector as a hidden variable

which converts spatial nonlocality to backward affect. Weak correlations are also the basis 

for the Cheshire Cat Paradox [29] according to which a spin-1/2 particle can take one route 

of an interferometer while its spin takes the other. 

A series of experiments demonstrating the theory in Secs. 3.3-3.5 and especially in [12] is 

expected to take place at INRiM during 2014. 



3.5 Temporal Paradoxes Revisited 

The method of weak measurement can validate and shed some light on the above temporal 

paradoxes. A recent experiment of joint weak and interaction free measurement is suggested 

in [30,31]. Weak measurements validating the Hardy paradox (Sec. 2.4) and negative weak 

values of projection operators (Sec. 3.4) are presented in [32]. Furthermore, as we concluded 

in [10], weak measurements (or more specifically, protective measurements [33]) can be 

used to track the wavefunction's changes after each partial measurement introduced in Sec. 

2.3. We also suggest weak correlations measurements of the entangled pairs in Secs. 2.5-2.7 

in the spirit of the ones in [12].  

4 Quantum Oblivion: The Underlying Mechanism of several 

Quantum Feats 

Let us again take a step back to grasp the emerging overall picture of the quantum realm: It 

is a realm describing the microscopic where time-symmetry is much more common than in 

the classical, macroscopic realm. Recently, we were able to pinpoint this unique quantum 

reversibility with a simple gedankenexperiment.  

Notice first that momentum conservation is one of classical physics' most fundamental laws, 

which every translational symmetric system must obey. The following quantum interaction, 

however, seems to defy it. 

 

Let an electron and a positron, with spin states



1

(

)



2

X

X

X

 

and momenta



e

e

P

P





be sent along the y-direction, entering two Stern-Gerlach magnets (drawn for simplicity as 

beam-splitters) positioned at

0

0

( ,



,

)

e



t x

 and 

0

0



( ,

,

)



e

t x

 respectively (Fig. 6). The magnets 

split the particles’ paths according to their spins in the x-direction:  

1

( 1


2

)    and


2

e

e

e

\

 



 

1

( 3



4

)

2



e

e

e

\

 



 

 We shall describe the time evolution of the process with the wave-functions above and with 

two-state detector: I/II. 

The total wave function is: 

(24)

ICNFP 2013



00028-p.15


1

[( 1


2

) 3


( 1

2

) 4



]

2

e



e

e

e

e

e

I

II

\

 



 

   


 

Fig. 6: Possible electron-positron interactions. (a) The setting. (b-c) Annihilations. (d) Interaction-

free “collapse.”

a

b



d

4

2



1

3

t



1

t

2

3

1



3

2

4



2

1

e



e

e

e

e

e

e

e

c

(25)



EPJ Web of Conferences

00028-p.16




 

 

Depending on their positions at t



1

 or t



2

, the particles may (not) annihilate and consequently 

(not) release a pair of photons, which may in turn (not) trigger detectors positioned in the 

appropriate places. Let these photons, exhibiting the unique superposition emitted/not 

emitted, be termed “conditional photons” and let the detector’s two corresponding states be 

denoted by I/II 

At 

0

1



t

t

t

d d


 the superposition does not change: 

1

[( 1



2

) 3


( 1

2

) 4



]

2

e



e

e

e

e

e

I

II

\

 



 

At 


1

2

t



t

t

 


, if a photon pair is emitted we know that the particles ended up in paths 2 and 3.  

Otherwise,  

Fig. 7: The peculiar momentum exchange due to outcome (d) in Fig 6: The positron’s momentum is 

changed while that of the electron remains intact. 



e

e

e

e

(26)


ICNFP 2013

00028-p.17




1

[( 1


2

) 4


1

3

]



3

e

e

e

e

e

I

II

\

 



 

which is an interesting superposition:one component of it is a definite state while the other is 

a superposition in itself. 

At 


2

t

t

!

, if a photon is emitted, we know that the particles ended up in paths 1 and 3. 



Otherwise,  

1

( 1



2

) 4


2

e

e

e

I

\

 



 

which is peculiar. On the other hand the positron is physically affected by the interaction: It 

is not superposed anymore, hence if we time-reverse its splitting, it may fail to return to its 

origin. In other words, its momentum has changed. Not so with the electron: It remains 

superposed, hence its time-reversibility remains intact (Fig. 7). Thus only one party of the 

interaction "remembers" it by exhibiting change, while the other remains unaffected, 

apparently violating the momentum conservation law.  

We have recently shown that this quantum oblivion constitutes the essential ingredient of 

IFM as well as all its variations presented above. Once again, quantum mechanics turns out 

to owe its strength to its greater temporal flexibility.  



5 Zeno Going Quantum  

Whereas Zeno formulated his paradox on purely logical grounds, his 20

th

-Century followers 



[4] have shown that Nature herself can make time "stop" under an appropriate form of 

repeated measurement. The broad philosophical implications of this effect, not yet fully 

explored, go beyond the scope of this paper. Here we only mention Zeilinger's application of 

it to enhance the IFM [17]. By an appropriate choice of cyclical measurements, he managed 

to raise IFM's efficiency close to 100%.  

Strangely, however, this application was not explored further. This is peculiar because 

Hardy, in the works reviewed above (Sec. 2), has demonstrated several IFM variants even 

more striking than the original one. It would therefore be reasonable to expect the quantum 

Zeno effect to offer similar enhancements in their case too. Consider, e.g., Hardy's paradox 

[21] where a particle and anti-particle perform mutual IFM on one another. Augmented with 

the quantum Zeno effect, it can always produce the peculiar result that one member of the 

pair has visibly changed the other's state while it looks equally obvious that they never came 

into contact. This line of investigation has been recently taken up by our group, with several 

such intriguing effects to be reported soon. 

 

(28)


(27)

EPJ Web of Conferences

00028-p.18



6 Time: A geometric Parameter or the Real Source of

Evolution? 

What, then, is the bearing of these quantum paradoxes on the deeper issues concerning a 

nature of time? Following are a few speculative reflections, to which we hope later  to 

provide firmer grounding in theory and experiment. 

Classical physics, to which special and general relativity belong, treats time as a purely 

geometrical ingredient of the universe, alongside with the three spatial dimensions. Against 

the perfect logical rigor and experimental support that make relativity so powerful, many 

physicists find the "block universe" picture emerging from it manifestly awkward. In fact, 

the very notion of space-time implies that, just as all locations have the same degree of 

reality in space, so do all past, present, and future somehow exist along the times dimension 

without any moment being unique as the privileged "now." 

Against this mainstream view, there are alternative accounts [34] that address a few 

unresolved physical issues more straightforwardly, even though still lacking empirical 

support. They suspect that, if we experience time so differently from space, this difference 

may be objective, no matter how poorly represented in present-day physics. It is well-known 

that even the founders of the Block Universe, including Einstein, remained highly 

uncomfortable with it. The minus sign assigned to the zeroth dimension in Minkowski's 

geometrical formulation of relativity theory is only one hint that time differs from space in a 

very subtle yet objective sense. The vast unresolved issue of the origins of time asymmetry 

in the universe [35] is another.

 

In short, while Einstein and Minkowski are Parmenides' heirs in modern physics' thought, it 



was left to more intuitive philosophers like Bergson [36] to counter with Heraclitian 

dynamics. Bergson has ascribed time a genuine "flow" or "passage," characterize by 

"Becoming". Every event which we perceive as occurring "now" is indeed a novel 

phenomenon which, prior to that occurrencedid not exist in the most fundamental sense 

rather than "being already there" in the future direction of time but only inaccessible to 

observation.  

No other than de Broglie, one of quantum mechanics' pioneers, paid the following homage to 

Bergson [37]: 

[I]f Bergson could have studied the quantum theories in detail, he would have 

noted certainly with joy that, in the image that they offer us of the evolution of 

the physical world, they show us nature in all its occasions hesitating between 

several possibilities, and he would have undoubtedly repeated, as in La Pensée 



et le Mouvant, that ‘time is that very hesitation or it is nothing at all.’ 

Far from being mere poetical musings, these comments suggest a possible alternative to the 

relativistic picture of space-time. Indeed, Cramer, founder of the transactional interpretation 

of QM which was originally formulated within a strict Block Universe framework, discusses 

ICNFP 2013

00028-p.19




the "plane of the present" 

[38]


 where the advanced and retarded solutions of relativistic 

equation of motion perform their "handshake". He states [38]: 

[W]hile block-universe determinism is consistent with the transactional 

interpretation, it is not required. A part of the future is emerging into a fixed local 

existence with each transaction, but the future is not determining the past, and the 

two are not locked together in a rigid embrace.  

 

Being well-aware of the speculative nature of our model, we briefly sketch its present stage, 



hopefully to mature into a physical theory. 

We begin with the following assumption. Just as the speed of light is regarded as a Lorentz 

scalar, hence, unchanging when transforming between inertial frames, (as opposed to the 

space and time coordinates that change as a function of v/c), the quantum interaction can be 



regarded as more fundamental than the space and time coordinates. The space-time interval 

between two events following an interaction is therefore not a passive, pre-existing 

background for the interaction between wave-functions. Rather, it is the quantum 

interaction's very outcome. All the spatial and temporal oddities of quantum measurement, 

reviewed in the previous sections, would then be natural!  

Consider, e.g., a quantum position measurement. A particle whose wave-function is widely 

spread in space is eventually found in one of all the numerous locations along this wave-

function. What about all the locations where it has not been found? They are populated by 

the macroscopic bodies that have performed the interaction-free measurement that seem to 

indicate that the particle never went on that direction. Yet the wave-function itself, as any 

interference experiment can prove, did go in all these directions! The Block-Universe 

account for this case would allow either a "collapse," known for being incompatible with 

relativity, or some semi-classical hybrid a-la' "hidden variables." Can quantum mechanics 

offer another alternative? "No" would be the pertinent answer, but the reason for this 

ineffectiveness is important: It is just what QM lack to this day, namely a full quantum-

mechanical description for both microscopic and macroscopic bodies. This is, in other 

words, the notorious measurement problem.  

We submit that introducing "Becoming" into physics offers the key for the problematic 

"macroscopically-superposed state," a direct consequence of the quantum formalism yet 

never observed. The dead-and-alive cat exists not in a well-defend space-time within the 



closed box, but rather as a pre-space-time interaction between numerous wave-functions, the 

completion of which would give either the "dead" or "alive" state with the relevant space-

time configurations between all particles involved.  "Collapse," then, is the formation of the 

macroscopic event with its entire space-time configuration.  

These admittedly speculative hypotheses rely on the insights gained from the TSVF. In 

contrast to the classical  realm, quantum mechanics does not enable a full specification of the 

initial state at t=0 to predict the results of all measurements performed at later times. 

However, this fact is responsible also for our ability of defining a final state-vector 

describing the system (this final state is clearly redundant in classical mechanics).  At first 

EPJ Web of Conferences

00028-p.20



sight, this double boundary condition on the wavefunction seems to resonate with a block-

universe approach. The uncertainty principle, however, provides us with freedom to define 

the present. As Aharonov et al. argue [39] in order to correctly simulate quantum 

correlations a sequence of moments should be thought of as a chain of pre- and post-

selection conditions.  

A preliminary model based on these assumptions is now in progress. We would feel 

privileged to present the following stages of its development in future meetings (whether 

they "already" exist somewhere in a Block Universe or awaiting genuine Becoming) of this 

highly inspiring forum in the very cradle of science.  

Acknowledgements 

It is a pleasure to thank Yakir Aharonov, Boaz Tamir and Shahar Dolev for insightful 

discussions and fruitful collaborations.  

References 

1.

A.C Elitzur, S. Dolev, AIP Conference Proceedings of Frontiers of Time: Retrocausation 





Experiment and Theory 

863, 27-44 (2006). 

2.

A.C Elitzur, E. Cohen, P. Beniamini, AIP Proceedings of Second Law of Thermodynamics: Status 



and Challenges. Second Law of Thermodynamics: Status and Challenges.

1411: pp. 221-244 

(2011). 


3.

E. Cohen, P. Beniamini, D. Grossman, L.P. Horwitz, A.C Elitzur, submitted to Foundations of 



Physics. http://arxiv.org/abs/1304.5598. 

4.

E.C.G. Sudarshan, B. Misra,  Journal of Mathematical Physics



18 (4): 756–763 (1977).

5.

A. Einstein, B. Podolsky, N. Physical Review



47 (10): 777–780 (1935).

6.

J.A. Wheeler, Mathematical Foundations of Quantum Theory, edited by A.R. Marlow, 9-48



(1978). 

7.

Y. Aharonov, P.G. Bergman, J.L. Lebowitz, Physical Review



134, 1410-16 (1964). 

8.

Y. Aharonov, L. Vaidman, Lect. Notes Phys.



734, 399-447 (2008). 

9.

J. Cramer, Reviews of Modern Physics



58, 647-688 (1986). 

10. A.C Elitzur, E. Cohen, AIP Conf. Proc. 1408: Quantum Retrocausation: Theory and Experiment 

(2011), pp. 120-131.                                                                                                     

11. Y. Aharonov, E. Cohen, A.C. Elitzur, in press, Phys. Rev. A.

12. Y. Aharonov, E. Cohen, D. Grossman, A.C. Elitzur, EPJ Web of Conferences

58 (2013). 

13. Y. Aharonov, E. Cohen, S. Ben-Moshe, forthcoming Proceedings of International Conference on 



New Frontiers in Physics (2014). 

14. B. Tamir, E. Cohen, S. Masis, http://arxiv.org/abs/1308.5614. 

15. B. Tamir, E. Cohen, A. Priel, submitted to Journal of Mathematical Physics (2013). 

16. A. C. Elitzur and L. Vaidman, Foundations of Physics



23, 987–997 (1993). 

17. P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, M. A. Kasevich, Physcal Review. Letters



74,

4763–4766, (1995). 

18. O. Hosten, M. T. Rakher, J. T. Barreiro, N. A. Peters, P. G. Kwiat, Nature

439, 949, (2006). 

19. A. G. White, J. R. Mitchell, O. Nairz, P. G. Kwiat, Physical Review A



58, 605 (1998). 

20. A. C. Elitzur, S. Dolev, Physical Review A 



63 ,(2001).

21. L. Hardy, Physics Letters A



167, 11–16, (1992). 

22. J. S. Bell, Physics



1, pp. 195–780, (1964). 

ICNFP 2013

00028-p.21



23. A. C. Elitzur, S. Dolev, A. Zeilinger, Proceedings of XXII Solvay Conference in Physics, Special 

IssueQuantum Computers and Computing, 452–461, World Scientific, London, (2002). 

24. Y. Aharonov, D.Z. Albert, L. Vaidman, Physcal Review Letters 60, 1351-1354, (1988). 

25. Y. Aharonov, D. Rohrlich, Quantum paradoxes: Quantum theory for the perplexedWiley, 

Weinheim (2005). 

26. B. Tamir, E. Cohen, QUANTA B (2013). 

27. C. Byard, T. Graham, A. Danan, L. Vaidman, A. N. Jordan, P. Kwiat, Quantum Theory: A Two-

Time Success Story-Yakir Aharonov Festschrift  D. C. Struppa and J. M. Tollaksen, eds., pp.389-

395, Springer-Verlag, (2014). 

28. B. Tamir, E. Cohen, forthcoming. 

29. Y. Aharonov, D. Rohrlich, S. Popescu, P.Skrzypczyk, New Journal of Physics



15 (2013). 

30. L. Vaidman,  Physical Review



A 87.5, (2013). 

31. A. Danan, D. Farfurnik, S. Bar-Ad, L. Vaidman, Physcal Review Letters



111, (2013).

32. J.S. Lundeen, A.M. Steinberg, Physical review letters



 102.2 (2009): 020404. 

33. Y. Aharonov, L. Vaidman, Physics Letters  A



178, 38-42, (1993). 

34. J.F.R Ellis, T. Rothman , International Journal of Theoretical Physics



49, 988-1003 (2010).

35. H.D Zeh, The Physical Basis of The Direction of Time, Springer, (2010). 

36. H. Bergson, Durée et simultanéité: a propos de la théorie d’Einstein (1922), Paris: Presses

Universitaires de France (1968).  

37. L. De Broglie, Les Conceptions de la physique contemporaine et les idées de Bergson sur le 

temps et sur le mouvement, in Revue de métaphysique et de morale, T.LIII, n.4, p.242, (1941). 

38. J. Cramer, 

http://arxiv.org/abs/quant-ph/0507089, (2005).

39. Y. Aharonov, S. Popescu, J. Tollaksen, http://arxiv.org/abs/1305.1615, (2013). 

EPJ Web of Conferences



00028-p.22

Yüklə 204,66 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə