Molekuláris bionika és infobionika szakok tananyagának komplex



Yüklə 485,48 Kb.
Pdf görüntüsü
səhifə7/18
tarix03.05.2018
ölçüsü485,48 Kb.
#41250
1   2   3   4   5   6   7   8   9   10   ...   18

Physics for NanobioTechnology

Principles of Physics for Bionic Engineering 

Árpád I. Csurgay, Ádám Fekete, Kristóf Tahy, Ildikó Csurgayné 

Pázmány Péter Catholic University 

Faculty of Information Technology 

Budapest, Hungary 

csurgay.arpad@itk.ppke.hu 

In this course nanobiotechnology refers to 

nanoscale  engineering  with  biological  and 

biochemical  applications  or  uses,  i.e.  to  the 

ways  that  nanotechnology  is  used  to  create 

inanimate devices to study biological systems. 

Physics deals with quantitative laws of inani-

mate nature. 

On  the  nanoscale  quantum  effects  have  a 

dominant  sway.  Electromagnetic  interactions 

are decisive. To describe devices and objects 

engineered  by  nanobiotechnology  mixed 

quantumclassical  physical  models  are  need-

ed  (Non-relativistic  quantum  electrodynam-

ics). 

An inanimate nanobio device can be envis-



aged  as  an  object  built  from  positively 

charged nuclei following the laws of classical 

point mechanics; electrons following the laws 

of  quantum  mechanics;  and  photons,  follow-

ing the laws of electrodynamics, all of them in 

vacuum, and on a biocompatible energy level. 

The electron gas follows the FermiDirac, the 

photon gas the BoseEinstein statistics.  

The  course  starts  with  a  glimpse  on  con-

temporary scientific world view, and on histo-

ry  of  the  laws  of  physics.  The  designer  of 

nanobio machine should be able to predict the 

behavior of its machine. The prediction can be 

based on cutandtry experience, or on mod-

els  and  simulation.  Ab  inito  physical  model-

ing  and  simulation  are  based  on  quan-

tumclassical dynamical models of machines. 

The  goal  of  the  course  is  to  introduce  the 

quantitative  modeling  and  simulation  of 

nanobio  machines.  Examples  include  micro-

scopes (e.g. STM, AFM, fluorescence micro-

scope)  which can see at the nanoscale; devic-

es  that  manipulate  and  fabricate  nano  ma-

chines;  nanoscale  sensors  and  actuators,  e.g. 

plasmonic  sensors;  machines  for  energy  har-

vest (e.g. artificial photosynthesis and hydro-

gen production); devices for medical diagnos-

tics  and  treatment  (e.g.  nanoparticles);  nano 

machines  (e.g.  motors,  laser  tweezers);  and 

nanoscale bio-inanimate interfaces.  

The main chapters include: 

1. Classical Mechanics (Basic Concepts of 

Analytical  Mechanics,      Mechanics  of  Many 

Point-like Bodies, Particle Dynamics in Elec-

tric and Magnetic Fields.  

2  –  3  –  4  –  5.  Classical  Electrodynamics 

(Experimental  Foundation,  Maxwell’s  Equa-

tions – Boundary Conditions, Time-harmonic 

Fields, Plane Wave Propagation, Plane Wave 

Reflection and Refraction; Waveguides, Elec-

tromagnetic  Radiation  and  Antennas;  Cavity 

Resonators). 

6 – 7 – 8. Quantum Mechanics (A Glimpse 

of the Quantum Story; Experimental Founda-

tion;  Feynman’s  Path  Integral;  Schrödinger 

Equation; Measurements and Operators; Dirac 

Formalism;  Wave  Pocket  Propagation;  Elec-

tron Reflection, Transmission and Tunneling; 

Single Electron in a One-dimensional Periodic 

Potential;  Quantum  Well,  Quantum  Wire, 

Quantum Dot; Hydrogen and Hydrogen Like 

Atoms). 


19


8.  Many  Body  Problem  and  Statistical 

Models (Multiple Body System with Negligi-

ble  Interaction  between  Identical  Particles; 

Equilibrium  in  Multiple  Body  Systems;  Fer-

miDirac Statistics).  

9.  Heuristic  Models  for  the  Structure  of 

Matter  (Structure  of  Matter;  Classical  Elec-

trodynamics  –  MaxwellLorentz  Equations; 

Solutions  of  the  Single-Electron  Problem  – 

Band Structure of Matter; The Effective Mass 

Schrödinger Equation; Quantum Well, Quan-

tum Line, Quantum Dot. 

10.  Heuristic  Models  for  Semiconductors 

(Semiconductor Materials; Semiconductors in 

Thermal Equilibrium; Contact Potential; Car-

rier Transport in Semiconductors). 

11  –  12.  Interaction  of  Matter  and  Radia-

tion (Experimental Foundation; On the Phys-

ics of Vacuum; Interactions in Thermal Equi-

librium;  LASER    The  Ruby-laser  and  the 

VCSEL;  A  Heuristic  Model  of  a  Two-state 

Atom  in  Electromagnetic  Field;  Perturbation 

of a Stationary State; Time-dependent Pertur-

bation; Time-evolution Operator – The Prop-

agator).  

13.  Heuristic  Models  of  Nanoscale  Sys-

tems (Dynamics of an Individual Isolated Na-

noparticle,  Nanoparticle  in  Dissipative  Envi-

ronment;  Quantum  Interference  Devices; 

Phase  Modulation  by  Electric  and  Magnetic 

Fields).

14.  Mathematical  Appendix  (Calculus  of 

Variations;  Vector  Analysis;  Inverse  Prob-

lems; Hilbert Space; Linear Operators in Hil-

bert Space; Eigenvalues and Eigenvectors).

21

20




21

VLSI Design Methodologies 

Péter Földesy

Pázmány Péter Catholic University 

Faculty of Information Technology  

Budapest, Hungary 

foldesy@itk.ppke.hu 

Summary  — This paper describes the 

content of the VLSI Design Methodologies 

course slides. 

Keywords - Circuit design, design flow

integrated circuit, manufacturing process, CAD 

tools

I.

I



NTRODUCTION

The course has an introductory style, as the 

topic  is  wide  and  has  many  theoretical  and 

practical  details,  furthermore  prepared  to  be 

understandable  by  non  electrical  engineering 

students.

This curriculum is driven by the slide show 

and  the  closely  related  practice.  It  gives  an 

introduction to the manufacturing of integrated 

circuits  (IC)    and  their  design.  Starting  from 

the  general  aspects,  it  presents  the  deep 

submicron  IC  manufacturing,  the  relation  of 

designed  structures  and  the  imperfect 

manufacturing  process,  the  advantages  of 

using modern CAD tools, the design flows of 

analog and digital systems, and various exotic 

technologies.

II.


S

TRUCTURE OF THE 

C

OURSE


M

ATERIAL


The  course  contains  twelve  lessons,  each 

lesson  covers  a  single  topic  and  they  are 

presented as a slide show. These power point 

presentations  follow  the  same  template, 

namely  a  brief  content  description,  the 

material  itself  sectioned  into  topics,  a 

concluding page, questions about the content, 

and finally the recommended literature. In the 

following chapters the topics are presented. 

A.

Introduction to Integrated Circuits 

This lesson describes the trends that exist in 

the  integrated  circuit  industry.  Both  from  the 

aspects  of  the  manufacturing  technology  and 

supporting design practices.  3D integration is 

briefly  introduced  and  its  motivations  are 

listed. The ICs are not uniform, several main 

classes  could  be  found,  these  variants  are 

described  as  well,  such  as  silicon  or  exotic 

material based technologies, DRAM, FLASH, 

CPU variants. 

B.

Manufacturing process 

As  the  basis  of  design,  the  manufacturing 

process is presented. It is emphasized how the 

process affects the possibilities and difficulties 

of  the  circuit  implementation.  Hence,  the 

connection between the drawn layout and the 

manufacturing  steps  is  shown  in  details.  The 

raw  material  preparation,  the  doping 

techniques,  the  affect  of  scaling  down  is 

presented.

Figure 1. Scanning electromicroscope image of a 

six metal process. 




Yüklə 485,48 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   ...   18




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə