Preface to the lecture, 1



Yüklə 4,22 Mb.
Pdf görüntüsü
səhifə153/180
tarix02.01.2018
ölçüsü4,22 Mb.
#19615
1   ...   149   150   151   152   153   154   155   156   ...   180

554

 

Different formulation of the law of induction



 

 

Fig. 27.6: ____ Law of induction according to Faraday or Maxwell?



 


Faraday versus Maxwell

 

555



 

27.6 Different formulation of the law of induction

 

Such a difference for instance is, that it is common practice to neglect the coupling 



between the fields at low frequencies. While at high frequencies in the range of the 

electromagnetic field the E- and the H-field are mutually dependent, at lower frequency 

and small field change the process of induction drops correspondingly according to 

Maxwell, so that a neglect seems to be allowed. Now electric or magnetic field can be 

measured independently of each other. Usually is proceeded as if the other field is not 

present at all.

 

That is not correct. A look at the Faraday-law immediately shows that even down to 



frequency zero always both fields are present. The field pointers however stand 

perpendicular to each other, so that the magnetic field pointer wraps around the pointer of 

the electric field in the form of a vortex ring in the case that the electric field strength is 

being measured and vice versa. The closed-loop field lines are acting neutral to the 

outside; they hence need no attention, so the normally used idea. It should be examined 

more closely if this is sufficient as an explanation for the neglect of the not measurable 

closed-loop field lines, or if not after all an effect arises from fields, which are present in 

reality.


 

Another difference concerns the commutability of E- and H-field, as is shown by the 

Faraday-generator, how a magnetic becomes an electric field and vice versa as a result of a 

relative velocity v. This directly influences the physical-philosophic question: What is 

meant by the electromagnetic field?

 

The textbook opinion based on the Maxwell equations names the static field of the charge 



carriers as cause for the electric field, whereas moving ones cause the magnetic field. But 

that hardly can have been the idea of Faraday, to whom the existence of charge carriers 

was completely unknown. The for his contemporaries completely revolutionary abstract 

field concept based on the works of the Croatian Jesuit priest Boscovich (1711-1778). In 

the case of the field it should less concern a physical quantity in the usual sense, than 

rather the experimental experience"' of an interaction according to his field description. 

We should interprete the Faraday-law to the effect that we experience an electric field, if 

we are moving with regard to a magnetic field with a relative velocity and vice versa.

 

In the commutability of electric and magnetic field a duality between the two is expressed, 



which in the Maxwell formulation is lost, as soon as charge carriers are brought into play. 

Is thus the Maxwell field the special case of a particle free field? Much evidence points to 

it, because after all a light ray can run through a particle free vacuum. If however fields 

can exist without particles, particles without fields however are impossible, then the field 

should have been there first as the cause for the particles. Then the Faraday description 

should form the basis, from which all other regularities can be derived. 

What do the textbooks say to that?

 



556

 

Contradictory opinions in textbooks



 

 

Fig. 27.7: Different opinions and derivations



 

:     K. Kupfmuller: Einfuhrung in die theoretische Elektrotechnik,  12. Auflage, 

Springer Verlag 1988, Seite 228, Gl. 22.

 

:    G.   Bosse:   Grundlagen  der  Elektrotechnik  II,   BI-Hochschultaschenbucher 

Nr. 183, l.Aufl. 1967, Kap. 6.1 Induktion, Seite 58

 

:   R. W. Pohl: Einfuhrung in die Physik, Band 2 Elektrizitatslehre, 21. Auflage, 

Springer-Verlag 1975, Seite 77

 



Faraday versus Maxwell

 

557



 

27.7 Contradictory opinions in textbooks

 

Obviously there exist two formulations for the law of induction (27.1 and 27.1*), which 



more or less have equal rights. Science stands for the question: which mathematical 

description is the more efficient one? If one case is a special case of the other case, which 

description then is the more universal one?

 

What Maxwell's field equations tell us is sufficiently known, so that derivations are 



unnecessary. Numerous textbooks are standing by, if results should be cited. Let us hence 

turn to the Faraday-law (27.1). Often one searches in vain for this law in schoolbooks. 

Only in more pretentious books one makes a find under the keyword "unipolar induction". 

If one however compares the number of pages, which are spent on the law of induction 

according to Maxwell with the few pages for the unipolar induction, then one gets the 

impression that the latter only is a unimportant special case for low frequencies. 

Kupfmuller speaks of a ,,special form of the law of induction"

, and cites as practical 

examples the induction in a brake disc and the Hall-effect. Afterwards Kupfmiiller derives 

from the ,,special form" the ,,general form" of the law of induction according to Maxwell, 

a postulated generalization, which needs an explanation. But a reason is not given

Bosse gives the same derivation, but for him the Maxwell-result is the special case and not 



his Faraday approach

! In addition he addresses the Faraday-law as equation of 

transformation and points out the meaning and the special interpretation. 

On the other hand he derives the law from the Lorentz force, completely in the style of 

Kupfmuller

 and with that again takes it part of its autonomy. Pohl looks at that different. 

He inversely derives the Lorentz force from the Faraday-law

.

 



By all means, the Faraday-law, which we want to base on instead of on the Maxwell 

equations, shows ,,strange effects



" from the point of view of a Maxwell representative 

of today and thereby but one side of the medal (eq. 27.1). Only in very few distinguished 

textbooks the other side of the medal (eq. 27.2) is mentioned at all. In that way most 

textbooks mediate a lopsided and incomplete picture

. If there should be talk about 

equations of transformation, then the dual formulation belongs to it, then it concerns a pair 

of equations, which describes the relations between the electric and the magnetic field.

 

If the by Bosse



 prompted term ,,equation of transformation" is justified or not at first is 

unimportant. That is a matter of discussion.

 

:     K.   Kupfmuller:   Einfuhrung  in   die   theoretische   Elektrotechnik,   12.Aufl., 

Springer Verlag 1988, Seite 228, Gl. 22.

 

:    G.   Bosse:   Grundlagen  der  Elektrotechnik  II,  BI-Hochschultaschenbucher 

Nr.183, l.Aufl. 1967, Kap. 6.1 Induktion, Seite 58

 

:   R.W.Pohl:    Einfuhrung   in   die    Physik,    Bd.2   Elektrizitatslehre,    2 l.Aufl. 

Springer-Verlag 1975, Seite 77

 

:   G.   Lehner:   Elektromagnetische   Feldtheorie,   Springer-Lehrbuch   1990,   1. 

Aufl., Seite 31 Kommentar zur Lorentzkraft (1.65)

 



Yüklə 4,22 Mb.

Dostları ilə paylaş:
1   ...   149   150   151   152   153   154   155   156   ...   180




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə