Preface to the lecture, 1



Yüklə 4,22 Mb.
Pdf görüntüsü
səhifə161/180
tarix02.01.2018
ölçüsü4,22 Mb.
#19615
1   ...   157   158   159   160   161   162   163   164   ...   180

Objectivity versus relativity

 

28.4 The derivation of the length contraction



 

The Lorentz transformation is the result of a purely mathematical problem. Stimulated by 

the surprisingly result of the Michelson experiment the Dutchman Hendrik A. Lorentz 

1891 asked himself, how the equations of the Galilei-transformation would have to look 

like, if the propagation of light wouldn't be infinitely fast but finite and constant. He 

thereby proceeds from the assumption of two inertial systems moving against one another 

with a not accelerated velocity v, in which the laws of Newtonian physics are equally 

valid


. As a result of the relative motion a change of the length measures will occur.

 

This at first can be explained as a purely geometric effect in the context of nonrelativistic 



physics. We imagine a vehicle, which is on its way with constant velocity, and emits an 

optical or acoustical signal. Sideways in the countryside is standing in a perpendicularly 

measured distance L a reflector (mirror), which sends the signal back again. The velocity 

of the signal however isn't infinitely fast and from that follows that the vehicle during the 

propagation time of the signal as well has moved a bit further. The actual way, which the 

signal had to cover now amounts to L

o

 (> L). The distance measure thus is observed 



smaller as it is in reality, to be specific for the factor of the square root of Lorentz (fig. 

28.4).


 

 (28.16)


 

According to the principle of relativity it doesn't play a role, if the vehicle is driving or if 

it is standing still and the mirror is moving with a linear uniform velocity.

 

Initially Einstein also only spoke of an observable length contraction, which must not 



necessarily occur in reality, an optical deception so to speak. Lorentz however proceeded 

from the assumption of a physical length change, thus a length change existing in reality, 

what in practice at first makes no difference. If e.g. at relativistic velocities a rocket 

becomes smaller, then the pilot equally shrinks, so that it would not be possible to notice a 

present difference.

 

If however the observer stands outside the events and takes a ,,neutral standpoint", then he 



will be able to see, which interpretation is the right one. Today some examples are known. 

In accelerators particles at relativistic fast velocities actually get smaller for the factor of 

the square root of Lorentz. That has been proven and this result afterwards gives the 

Dutchman Lorentz right! The followers of the physical length contraction also are called 

Neo-Lorentzians.

 

In the vicinity of a gravitational mass the speed of light becomes so slow, that the 



shortening factor plays a role and space is curved towards the mass. To understand this 

shortening of scale, the influence of the field also should be considered.

 

: Example: In a closed lift physical experiments are being carried out. 

Accelerations of the lift have an influence on the experiments. However no 

influence can be detected, if the lift is standing still or is moving with 

constant velocity. It with that fulfills the conditions of an inertial system. 

The question is: what do the experiments show someone standing outside, 

whom the lift passes by?

 



580

 

The dependence of the Lorentz contraction on the field



 

From the comparison of the Lorentz contraction 

(28.16) 

with the field dilatation (28.14 and 28.15)

 

 

follows



 

 

(28.17)



 

the proportionality (length measures depending on field): 

E, H  ~ 1/L

and      Eo, Ho ~ l/L



0

(28.18) 



Experimental examples

< i >



 

Electrostriction (piezo speaker) 

 

Magnetostriction 



 

Field or gravitational lenses 



 

Curvature of space, deflection of light 



Conclusion



 

The field determines the length measures (what is 1 meter) 

 

The field determines the velocities v (in m/s) 



 

The field determines the speed of light c [m/s] 



 

Measurement of the speed of light is made with itself: 



 (28.19)

 



 

Measured is a constant of measurement c = 300.000 km/s 

 

The speed of light c is not a constant of nature! 



Fig. 28.5: The dependence of the Lorentz contraction on the field

 

:     see part 1, chap. 6.10 



:    see part 1, chap. 6.11

 



Objectivity versus relativity 

581


 

28.5 The dependence of the Lorentz contraction on the field 

The two results of the field dilatation (28.14 and 28.15) and of the Lorentz contraction 

(28.16) must be brought together and compared (28.17). Doing so the mathematical 

expression of the square root of Lorentz is cancelled out. That is of utmost importance

since with that also all limits disappear and there remains a purely physical relation, a 

proportionality of utmost importance (28.18).

 

What was the sense of the limits associated with the introduction of so-called inertial 



systems, which are the basis of the Lorentz transformation and which were adopted for our 

derivation of the field dilatation? They now only are auxiliary considerations according to 

model. We have chosen a very simple model, which can be described mathematically, in 

which an observer holds in his hand gauges for distances and field strengths and with that 

gauges a system flying by with constant velocity. He on the one hand determines a length 

contraction and on the other hand a field dilatation. He compares both with each other and 

comes to the conclusion: The field determines the dimensions!

 

This statement is purely physical and it is generally valid. It is independent of the relative 



velocity and all other mathematical conditions. A centrally accelerated circular motion e.g. 

will falsify the length contraction to the same extent, as the at the same time occurring 

field dilatation. It can be expected, that in addition to the square root of Lorentz also other 

errors will mutually efface, so that a generalization in this case actually seems to be 

allowed.

 

The won proportionality is of most elementary importance. We use it in the case of the 



piezo speaker and know it from the curvature of space and deflection of light in presence 

of extreme fields. If we ourselves however are exposed to the field as an observer, in 

which also the object to be observed is situated, then we are in the dilemma, not being able 

to perceive the influence. If we, to stay with the example, would sit in a rocket and this 

would become smaller at faster velocity, then we would notice nothing, since we also 

would shrink along to the same extent.

 

That concerns every measurement of velocity in general and the speed of light c in 



particular, which as is well-known is measured in meters per second. But if the field 

determines c and in the same way the length measure, which is given in meters, then both 

stand in a direct proportionality to each other, then we won't have the slightest chance to 

measure the speed of light. If namely c is changed, then this concerns the measurement 

path in the same way. Now the variable is measured with itself and as a result appears c, a 

constant value. We neither can see the change, since our eyes scan all objects optically and 

that means with c.

 

It is the nightmare of each and every measurement engineer, if the gauge depends on the 



factor to be measured. No wonder, if the theorem of addition of the velocities apparently 

loses its validity and always the same c is being measured, independent of the direction in

 

which the source of radiation is moving (chap. 6.11). The result is:



 

The speed of light is a constant of measurement and not a constant of nature! 

If however the light is scanned with the speed of light, then also all components of the 

light vector correlated with themselves result in the same constant value c, then actually 

the vector of the speed of light loses its orientation in space and becomes a scalar factor. 

The Maxwell equations already anticipate this circumstance, but without providing an 

explanation why this is correct. Only the new field approach can answer the open 

question. With the derivation an axiom of physics - one also can say stumbling block - 

has been overcome.

 



Yüklə 4,22 Mb.

Dostları ilə paylaş:
1   ...   157   158   159   160   161   162   163   164   ...   180




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə