Pvi20 Front Cover indd


Figure 9. (a) Image of the front-side metal grid of a metal-wrap-through solar cell. (b) Corresponding local distribution of the



Yüklə 118,63 Kb.
Pdf görüntüsü
səhifə8/10
tarix19.12.2023
ölçüsü118,63 Kb.
#151586
1   2   3   4   5   6   7   8   9   10
0ccc6cf01d-the-cell-doctor-a-detailed-health-check-for-industrial-silicon-wafer-solar-cells

Figure 9. (a) Image of the front-side metal grid of a metal-wrap-through solar cell. (b) Corresponding local distribution of the 
series resistance of the solar cell under maximum power conditions, after being processed by the GRIDDLER software [10].
(a)
(b)
Figure 10. Two-diode model of a solar cell, and the corresponding mathematical 
description of the 
J-V
 characteristics of the cell.
Series resistance
70%
Shunt resistance
10%
Non-ideal
20%
Figure 11. 
FF 
loss analysis of a standard industrial p-type Al-BSF solar cell. 


54
w w w. p v - te ch . o rg
Cell 
Processing
high-precision measurements and relatively 
simple modelling. This analysis results in 
a ‘health check’ for the solar cell under test 
and clearly illustrates the most effective 
route for the manufacturer of the solar 
cell towards achieving higher efficiencies. 
The loss quantification method has been 
found to be extremely useful at SERIS 
for optimizing various types of solar cell 
design, as it enables the largest root causes 
of poor cell performance to be focused on 
first, before ‘turning knobs’ to fine-tune 
secondary effects.
Acknowledgements
The authors thank their colleagues from 
the Silicon Photovoltaics Cluster of SERIS 
for their assistance in sample processing 
and characterization. SERIS is sponsored 
by the National University of Singapore 
(NUS) and Singapore’s National Research 
Foundation (NRF) through the Singapore 
Economic Development Board (EDB). 
References
[1] Aberle, A.G., Zhang, W. & Hoex, B. 
2011, “Advanced loss analysis method 
for silicon wafer solar cells”, 
Energy 
Procedia
, Vol. 8, p. 244.
[2] Aberle, A .G., Wenham, S.R . & 
Green, M.A. 1993, “A new method 
for accurate measurements of the 
lumped series resistance of solar cells”, 
Proc. 23rd IEEE PVSC
, Louisville, 
Kentucky, USA, p. 133.
[3] Kane, D.E. & Swanson, R.M. 1985, 
“ Me a su re m e n t o f th e e m i tte r 
saturation current by a contactless 
photoconductivity decay method”, 
Proc. 18th IEEE PVSC
, Las Vegas, 
Nevada, USA, p. 578.
[4] Baker-Finch, S.C. & McIntosh, K. 
2011, “Reflection of normally incident 
light from silicon solar cells with 
pyramidal texture”, 
Prog. Photovolt.: 
Res. Appl.
, Vol. 19, pp. 406–416.
[5] Sinton, R.A. & Cuevas, A. 1996, 
“Cont ac tless deter mination of 
cur rent-volt age char acter istic s 
and minority-carrier lifetimes in 
semiconductors from quasi-steady-
state photoconductance data”, 
Appl. 
Phys. Lett.
, Vol. 69, p. 2510. 
[6] Kerr, M.J. & Cue vas, A . 2002, 
“General parameterization of auger 
recombination in crystalline silicon”,
 J. 
App. Phys.
, Vol. 91, p. 2473.
[7] Richter, A. et al. 2012, “Improved 
quantitative description of Auger 
recombination in crystalline silicon”, 
Physical Review B
, Vol. 86, p. 165202.
[8] Khanna, A. et al. 2013, “A general fill 
factor loss analysis method for silicon 
wafer solar cells”, 
J. Photovolt.
[in 
press].
[9] Mette, A. 2010, GridSim
©
v. 5.2 (small 
changes by M. Hoerteis in v. 5.3), 
Fraunhofer Institute for Solar Energy 
Systems ISE.
[10] Wong, J. 2012, “Griddler: Advanced 
solar cell metallization simulation 
and computer-aided design”, 
Proc. 
4th Worksh. Contact. Sil. Sol. Cells

Constance, Germany.

Yüklə 118,63 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə