Teknologi dan industri syahrial, S. T



Yüklə 488,45 Kb.
səhifə6/11
tarix24.02.2018
ölçüsü488,45 Kb.
#27884
1   2   3   4   5   6   7   8   9   10   11



IKATAN KOVALEN

Ikatan  kovalen  dapat  terjadi  karena  adanya  penggunaan elektron secara bersama. Apabila ikatan kovalen terjadi maka kedua  atom  yang  berikatan  tertarik  pada  pasangan  elektron  yang  sama.  Molekul hidrogen H2 merupakan contoh pembentukan ikatan kovalen.



pembentukan ikatan kovalen atom-atom hidogen

Pembentukan ikatan kovalen atom-atom hidogen

Masing-masing  atom  hidrogen  mempunyai  1  elektron  dan untuk mencapai konfigurasi oktet yang stabil seperti unsur golongan  gas mulia maka masing-masing atom hidrogen memerlukan tambahan 1 elektron. Tambahan 1 elektron untuk masing-masing atom hidrogen tidak  mungkin  didapat  dengan  proses  serah  terima  elektron  karena keelekronegatifan yang sama. Sehingga konfigurasi oktet yang stabil dpat  dicapai  dengan  pemakaian  elektron  secara  bersama.  Proses pemakaian  elektron  secara  bersama  terjadi  dengan  penyumbangan masing-masing 1 elektron ari atom hidrogen untuk menjadi pasangan elektron milik bersama. Pasangan elektron bersama ditarik oleh kedua inti atom hidrogen yang berikatan.

Pembentukan Ikatan Kovalen


Ikatan  kovalen  biasanya terjadi  antar  unsur  nonlogam  yakni antar unsur yang mempunyai keelektronegatifan relatif besar. Ikata kovalen  juga  terbentuk  karena  proses  serah  terima  elektron  tidak mungkin   terjadi.   Hidrogen   klorida   merupakan   contoh   lazim pembentukan  ikatan  kovalen  dari  atom  hidrogen  dan  atom  klorin. Hidrogen   dan   klorin  merupakan   unsur   nonlogam   dengan  harga keelektronegatifan  masing-masing  2,1  dan  3,0.  Konfigurasi  elektron atom hidrogen dan atom klorin adalah

H          : 1

Cl         : 2        8   7

Berdasarkan aturan oktet yang telah diketahui maka atom hidrogen kekurangan 1 elektron dan atom klorin memerlukan 1 elektron untuk membentuk konfigurasi stabil golongan gas mulia. Apabila dilihat dari segi keelektronegatifan, klorin mempunyai harga keelektronegatifan yang  lebih  besar  dari  hidrogen  tetapi  hal  ini  tidak  serta  merta membuat klorin mampu menarik elektron hidrogen karena hidrogen juga   mempunyai   harga keelektronegatifan   yang   tidak   kecil. Konfigurasi   stabil   dapat   tercapai   dengan   pemakaian   elektron bersama.    Atom hidrogen dan atom klorin    masing-masing menyumbangkan satu elektron untuk membentuk pasangan elektron milik bersama.



pembentukan hcl

Pembentukan HCl


Ikatan Kovalen Rangkap dan Rangkap Tiga


Dua  atom  dapat  berpasangan  dengan  mengguna-kan  satu pasang, dua pasang atau tiga pasang elektron yang tergantung pada jenis unsur yang berikatan. Ikatan dengan sepasang elektron disebut ikatan  tunggal  sedangkan  ikatan  yang  menggu-nakan  dua  pasang elektron  disebut  ikatan  rangkap  dan  ikatan  dengan  tiga  pasang elektron disebut ikatan rangkap tiga. Ikatan rangkap misalnya dapat dijumpai pada molekul oksigen (O2) dan molekul karbondiksida (CO2) sedangkan ikaran rangkap tiga misalnya dapat dilihat untuk molekul nitrogen (N2) dan etuna (C2H2).

IKATAN LOGAM
Halaman ini memperkenalkan ikatan yang terjadi pada logam. Halaman ini menjelaskan bagaimana munculnya ikatan logam dan kenapa ikatan tersebut kekuatannya bervariasi dari logam yang satu dengan logam yang lain.

Apakah ikatan logam itu?

Ikatan logam pada natrium

Logam cenderung memiliki titik leleh dan titik didih yang tinggi sehingga memberikan kesan kuatnya ikatan yang terjadi antara atom-atomnya. Secara rata-rata logam seperti natrium (titik leleh 97.8°C) meleleh pada suhu yang sangat jauh lebih tinggi dibanding unsur (neon) yang mendahuluinya pada tabel periodik.

SNatrium memiliki struktur elektronik 1s22s22p63s1. Ketika atom-atom natrium datang secara bersamaan, elektron pada orbital atom 2s dari satu atom natrium membagi ruang dengan elektron yang bersesuaian pada atom tetangganya untuk membentuk sebuah orbital molekul ? kebanyakan sama atau serupa dengan cara pembentukan ikatan kovalen.

Perbedaannya, bagaimanapun, tiap atom natrium tersentuh oleh delapan atom natrium yang lainnya ? dan terjadi pembagian (sharing) antara atom tengah dan orbital 3s di semua delapan atom yang lain. Dan tiap atom yang delapan ini disentuh oleh delapan atom natrium, yang kesemuanya disentuh oleh delapan atom natrium, terus dan terus sampai kamu memperoleh seluruh atom dalam bongkahan natrium.

Semua orbital 3s dalam semua atom saling tumpang tindih untuk memberikan orbital molekul dalam jumlah yang sangat banyak yang memeperluas keseluruhan tiap bagian logam. Terdapat jumlah orbital molekul yang sangat banyak, tentunya, karena tiap orbital hanya dapat menarik dua elektron.

Elektron dapat bergerak dengan leluasa diantara orbital-orbital molekul tersebut, dan karena itu tiap elektron manjdi terlepas dari atom induknya. Elektron tersebut disebut terdelokalisasi. Logam terikat bersamaan melalui kekuatan dayatarik yang kuat antara inti positif dengan elektron yang terdelokalisasi.


http://www.chem-is-try.org/wp-content/migrated_images/atom/metalbond.gif

Hal ini kadang-kandang dilukisakan sebagai "susunan inti positif di lautan elektron".

Jika kamu menggunakan tinjauan ini, hati-hati! Apakah logam merupakan atom atau ion? Jawabannya adalah logam merupakan atom.

Setiap pusat positif pada diagram menggambarkan sisa atom yang terlepas dari elektron terluar, tetapi elektron tersebut tidak menghilang – ini mungkin tidak termasuk tambahan pada atom yang istimewa, tetapi pusat positif tetap berada dalam struktur. Karena itu logam natrium ditulis dengan Na – bukan Na+.



Ikatan logam pada magnesium

Jika kamu menyusun argumentasi yang sama dengan magnesium, kamu akhirnya akan memperoleh ikatan yang lebih kuat dan tentunya titik leleh yang lebih tinggi.

Magnesium memiliki struktur elektronik terluar 3s2. Diantara elektro-elektronnya terjadi delokalisasi, karena itu "lautan" yang ada memiliki kerapatan dua kali lipat daripada yang terdapat pada natrium. Sisa "ion" juga memiliki muatan dua kali lipat (jika kamu menggunakan tinjauan ikatan logam) dan tentunya akan terjadi dayatarik yang lebih banyak antara "ion" dan "lautan". Lebih realistis, tiap atom magnesium memiliki satu proton lebih banyak pada intinya dibandingkan yang dimiliki oleh natrium, dan karena itu tidak hanya akan terdapat jumlah elektron yang terdelokalisasi tetapi juga akan terjadi lebih banyak dayatarik yang terjadi diantara mereka. Atom-atom magnesium memiliki jari-jari yang sedikit lebih kecil dibandingkan atom-atom natrium dan karena itu elektron yang terdelokalisasi lebih dekat ke inti. Tiap atom magnesium juga memiliki 12 atom terdekat dibandingkan delapan yang dimiliki natrium. Faktor-faktor inilah yang meningkatkan kekuatan ikatan secara lebih lanjut.
Ikatan logam pada unsur-unsur transisi

Logam transisi cenderung memiliki titik leleh dan titik didih yang tinggi. Alasannya adalah logam transisi dapat melibatkan elektron 3d yang ada dalam kondisi delokalisasi seperti elektron pada 4s. Lebih banyak elektron yang dapat kamu libatkan, kecenderungan dayatarik yang lebih kuat akan kamu peroleh.


Ikatan logam pada leburan logam

Pada leburan logam, ikatan logam tetap ada, meskipun susunan strukturnya telah rusak. Ikatan logam tidak sepernuhnya putus sampai logam mendidih. Hal ini berarti bahwa titik didih merupakan penunjuk kekuatan ikatan logam dibandingkan dengan titik leleh. Pada saat meleleh, ikatan menjadi longgar tetapi tidak putus



Ikatan Van der Waals
Dalam kimia fisik, van der Waals (atau van der Waals interaksi), setelah ilmuwan Belanda bernama Johannes Diderik van der Waals, adalah menarik atau gaya tolak antara molekul (atau antara bagian-bagian molekul yang sama) selain dari yang disebabkan oleh kovalen obligasi atau ke interaksi elektrostatik ion dengan satu sama lain atau dengan molekul netral. [1] Istilah meliputi:

    * Gaya antara dipol permanen dan yang sesuai dipol terinduksi
    * Seketika induced induced dipol-dipol (gaya Dispersi London).

Hal ini juga kadang-kadang digunakan secara longgar sebagai sinonim untuk totalitas gaya antarmolekul. Van der Waals yang relatif lemah dibandingkan dengan ikatan kimia normal, tapi memainkan peran mendasar dalam bidang yang berbeda seperti supramolekul kimia, biologi struktural, polimer ilmu pengetahuan, teknologi nano, ilmu permukaan, dan fisika benda terkondensasi. Van der Waals menentukan sifat kimia banyak senyawa organik. Mereka juga menentukan kelarutan zat-zat organik di kutub dan non-polar media. Dalam alkohol berat molekul rendah, sifat gugus hidroksil kutub mendominasi gaya antarmolekul yang lemah van der Waals. Dalam alkohol berat molekul yang lebih tinggi, sifat rantai hidrokarbon nonpolar (s) mendominasi dan menentukan kelarutan. Van der Waals tumbuh dengan panjang nonpolar bagian dari substansi.


BAB IV
LAMBANG UNSUR, SENYAWA DAN BENTUK MOLEKUL
Alam semesta ini mengandung zat yang jumlahnya tak terhitung. Ternyata semua zat tersebut tersusun dari zat-zat dasar yang disebut dengan unsur. Unsur merupakan zat tunggal yang tidak dapat diuraikan lagi menjadi zat-zat lain yang lebih sederhana dengan reaksi kimia biasa (bukan reaksi nuklir).

Nama unsur
Dilingkungan kita banyak terdapat unsur yang mudah dikenal dan didapatkan. Arang yang berwarna hitam, biasanya digunakan pensil dan untuk elektroda bateri merupakan unsur yang diberi nama karbon. Beberapa logam yang ada disekitar anda merupakan unsur, seperti: emas, besi, perak, aluminium, seng, tembaga. Hingga saat ini sudah ditemukan 110 buah unsur.

Kalau kita perhatikan, nama-nama unsur tersebut sangat menarik. Nama unsur diambil dari nama suatu daerah, seperti germanium (Jerman), polonium (Polandia), Fransium (Perancis), europium (Eropa), amerisium (Amerika), kalifornium (Kalifornia), stronsium (Strontia, Scotlandia).


Beberapa nama diambil dari nama ilmuan, seperti: einstenium (Eistein), curium (Marie dan Pierre Curie), fermium (Enrico Fermi), nobelium (Alfred Nobel). Beberapa nama diambil dari astronomi, seperti: uranium (Uranus), plutonium (Pluto), neptunium (Neptunus), helium (helios= matahari).
Nama unsur mulai nomor 104 menggunakan akar kata yang menyatakan nomor atom, yaitu:
nil = 0, un = 1, bi = 2, tri = 3, quad =4, pent = 5, hex = 6, sept = 7, okt = 8, enn = 9.
Misalnya unsur dengan nomor 107:
1 = un
0 = nil
7 = sept
107 = un nil sept + ium = unilseptium (Uns)

Lambang Unsur
Untuk memudahkan mengingat dan menuliskan senyawa kimia, pada tahun 1813 Jons Jacob Berzelius mengusulkan pemberian lambang berupa huruf untuk masing-masing unsur.
Apakah huruf C, Au, Al, dan O memiliki arti bagi anda? Setiap huruf atau pasangan huruf tersebut merupakan lambang kimia, yang digunakan untuk menuliskan sebuah unsur secara singkat. Bahan hitam setelah kayu dibakar adalah karbon, lambangnya C. Emas yang bayak digunakan sebagai perhiasan mempunyai lambang kimia Au. Beberapa Alat dapur terbuat dari aluminium yang mempunyai lambang kimia Al.
Lambang unsur terdiri dari satu huruf besar atau satu huruf besar diikuti huruf kecil. Beberapa lambang unsur diambil dari huruf pertama unsur tersebut, misalnya nitrogen (N), oksigen (O), hidrogen (H). Mengapa emas diberi lambang Au? Au berasal dari nama latin dari emas “Aurum”. Fe merupakan lambang unsur besi yang diambil dari “Ferum”, Ag merupakan lambang perak yang diambil dari kata “Argentum”.

http://4.bp.blogspot.com/_u0anlxjnvwe/slcydjvjrji/aaaaaaaaafa/awdumlhtcfw/s320/38.gif

Tabel Unsur-unsur yang sudah ditemukan

Yüklə 488,45 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə