Understanding the problems of inland waters: case study



Yüklə 10,74 Mb.
Pdf görüntüsü
səhifə17/138
tarix07.07.2018
ölçüsü10,74 Mb.
#53616
1   ...   13   14   15   16   17   18   19   20   ...   138

Major threats to these ecosystems are; land reclamation for food production as well as infrastructure 
construction, water abstraction for irrigation and industrial as well as domestic uses, disconnection 
from parent rivers, overuse of resources, eutrophication and pollution and invasive species. These 
threats will include increases in temperatures, changes in the total amount and distribution pattern 
of precipitation, and sealevel rise. The dominant drivers of change affecting aquatic ecosystems 
include rise in water temperature and hydrological changes, followed by an increase in the nutrient 
loading and salinization. In some cases temperature increase will end up with an extinction of 
characteristic species. The biotic communities in standing waters will cause an increase in the 
frequency of stratification periods, productivity and algal blooms together with eutrophication. Other 
factors include invasions of exotic species and the exploitation of aquatic biota such as harvest of 
fish, crustaceans and other organisms, as well as fibres from the reeds. Freshwaters mainly in Asia 
are increasingly used for aquaculture, effected by eutrophication, pollution, escape of cultured 
organisms to the wild and spread of diseases as well as local habitat changes, acidification, 
salinization, organic pollution, genetic disruption and toxic stress (Janse et al., 2015). 
Caspian is the largest enclosed brackish inland water system, rich in oil and gas, with salinity up to 
13.7 percent, experiencing significant changes in water levels and embodying diversified habitats 
from vast river systems to extensive wetland systems. The presence of large shallow areas, pose a 
potential threat to biodiversity and especially endemics in the sea. Its biodiversity together with the 
coastal zone make it one of the most valuable ecosystems in the world. Biological endemism rate in 
the Caspian is extremely high, with a large number of representatives from almost all major phyla on 
earth. It abounds in diverse flora and fauna with high natural productivity. Most important species is 
the sturgeon, with a standing stock of 85 percent from the world's sturgeon population. Illegal and 
overfishing are dramatically reducing the sturgeon population. The loss of spawning grounds and 
nesting sites follows the sea-level changes. Pollution and introduced species are also effective. The 
Sea lies on the crossing of migration routes of millions of migrating birds and offers refuge to a 
number of rare and endangered birds of the world ornithofauna. The threats like regulation of its 
rivers, leading to a loss of reeds, cattail and bushes, as well as aquatic and coastal fauna are needed. 
A detailed ecological survey of the coastal and marine species and habitats, their uses, values and 
threats, all along the Caspian coastal areas is needed. Some anadromous and semi-migratory species 
have been deprived of their natural spawning grounds. An inventory of its ecological resources must 
be prepared in detail to develope the strategies for the management of transboundary biodiversity, 
including threatened or endangered migratory species.   
The  Caspian Sea is a unique ecosytem, but is facing  enormous pressure from several 
anthropogenic stressors. It  is facing a multitude of ecological challenges like; industrial and biological 
contamination, sea level fluctuation, fisheries overexploitation, management failure and collapse of 
commercial fish stocks, illegal fishing and poaching, invasion of Mnemiopsis leidyi, eutrophication, 
loss of biodiversity, and  environmental mismanagement. Moreover,  the Caspian Sea environment 
and bio-resources have been - and will be - inevitably exposed to on-going global climatic changes 
which is still a largely-ignored issue in the management in this region. 
 
References 
Abdolmalaki, S., Psuty, I. (2007) The effects of stock enhancement of pikeperch (Sander lucioperca) in Iranian 
coastal waters of the Caspian Sea. ICES J Mar Sci 64: 973-980. 
Aladin, N. (2001). Biodiversity of the Caspian Sea, CEP. 
Arpe, K., Bengtsson, L., Golitsyn, G., Mokhov, I., Semenov, V., Sporyshev, P.V. (2000). Connection between 
Caspian Sea level variability and ENSO. Geophys. Res. Lett., 27: 2693-2696. 
Askarova, M.A., Mussagaliyeva, A.N. (2014). The Ecological Situation in Contaminated Areas of Oil and Gas 
Exploration in Atyrau Region. Procedia Soc. Behav. Sci., 120: 455-459. 
Aubrey, D.G., Glushko, T.A., Ivanov, V.A. et al. (1994). North Caspian Basin: Environmental status and oil and 
gas operational issues, Report for Mobil-oil, 650 pages. 
Aubrey, D.G. (1994). Conservation of biological diversity of the Caspian Sea and its coastal zone. A proposal to 
the Global Environment Facility, Report to GEF, 250 pages. 
33


CEP. (1998). National reports of the Caspian Sea countries (Azerbaijan, Iran, Kazakhstan, Russian Federation, 
Turkmenistan), Caspian Environment Programme. 
Daskalov, G.M., Mamedov, E.V. (2007). Integrated fisheries assessment and possible causes for the collapse of 
anchovy kilka in the Caspian Sea. ICES J. Mar. Sci. 64: 503-511. 
de Mora, S., Villeneuve, J-P., Sheikholeslami, M.R., Cattini, C., Tolosa, I. (2004). Organochlorinated compounds 
in Caspian Sea sediments. Mar. Pollut. Bull. 48: 30-43. PMID: 
14725874 
Dimeyeva, L.A. (2013). Phytogeography of the northeastern coast of the Caspian Sea: native flora and recent 
colonizations. Journal of Arid Land, 5(4), 439-451.
 
Fazli, H., Zhang, CI., Hay, D.E., Lee, C.W., Janbaz, A.A., Borani, M.S. (2007). Population ecological parameters 
and biomass of anchovy kilka Clupeonella engrauliformis in the Caspian Sea. Fish Sci 73: 285-294. 
Fendereski, F., Vogt, M., Payne, M., Lachkar, Z., Gruber, N., Salmanmahiny, A. et al. (2014). Biogeographic 
classification of the Caspian Sea. Biogeosciences 11: 6451-6470. 
Finenko, G.A., Kideys, A.E., Anninsky, B.E., Shiganova, T.A., Roohi, A.,Tabari, M.R. et al. (2006). Invasive 
ctenophore  Mnemiopsis leidyi  in the Caspian Sea: feeding, respiration, reproduction and predatory 
impact on the zooplankton community. Mar. Ecol. Prog. Ser. 314: 171-185. 
Glantz, M.H.,  Zonn, I.S. (eds), (1997). Scientific, environmental, and political issues in the circum-Caspian 
region, Kluwer Academic Publishers, 350 pages. 
Ibrayev, R., Özsoy, E., Schrum, C., Sur, H. (2010). Seasonal variability of the Caspian Sea three-dimensional 
circulation, sea level and air-sea interaction. Ocean Sci., 6: 311-329. 
Kashkooli, O.B., Gröger, J., & Núñez-Riboni, I. (2017). Qualitative assessment of climate-driven ecological shifts 
in the Caspian Sea. PloS One, 12(5), e0176892. 
Karpinsky, M.G., Katunin, D.N., Goryunova, V.B., Shiganova, T.A. (2005). Biological features and resources. The 
Caspian Sea Environment: Springer. pp. 191-210. 
Kideys, A., Moghim, M. (2003). Distribution of the alien ctenophore Mnemiopsisleidyi in the Caspian Sea in 
August 2001. Mar. Biol. 142: 163-171. 
Kosarev, A.N., Yablonskaya, E.A. (1994). The Caspian Sea, SPB Academic Publishing, The Hague, 259 pages. 
Kuksa, V.I. (1994). The southern seas (Aral, Caspian, Azov and Black) under anthropogenic stress conditions, 
Gidrometeoizdat, Sankt-Petersburg, pp. 74-150, in Russian. 
Leonov, A., Stygar, O. (2001). Mathematical modeling of organogenic material biotransformation processes for 
studying the conditions of water eutrophication in the Caspian Sea surface layer. Water Resour 28: 535-
552. 
Mamaev, V. (2002). The Caspian Sea-enclosed and with many endemic species. European Environmental 
Agency. Europe's biodiversity-biogeographical regions and seas.
 
Mitrofanov, V.P. (2000). Kazakhstan action plan, Conservation of Caspian Sea habitat. 
Nasrollahzadeh, H.S., Din, Z.B., Foong, S.Y., Makhlough, A. (2008). Trophic status of the Iranian Caspian Sea 
based on water quality parameters and phytoplankton diversity. Cont. Shelf. Res. 28: 1153-1165. 
Nezlin, N.P. (2005). Patterns of seasonal and interannual variability of remotely sensed chlorophyll. The Caspian 
Sea Environment: Springer. pp. 143-157. 
Renssen, H., Lougheed, B., Aerts, J., De Moel, H., Ward, P., Kwadijk, J.C.J. (2007). Simulating long-term Caspian 
Sea level changes: the impact of Holocene and future climate conditions. Earth Planet Sci. Lett., 261: 
685-693. 
Roohi, A., Kideys, A.E., Sajjadi, A., Hashemian, A., Pourgholam, R., Fazli, H. et al. (2010). Changes in biodiversity 
of phytoplankton, zooplankton, fishes and macrobenthos in the Southern Caspian Sea after the invasion 
of the ctenophore Mnemiopsis leidyi. Biol. Invasions 12: 2343-2361. 
Stolberg, F., Borysova, O., Mitrofanov, I., Barannik, V., Eghtesadi, P. (2006). Caspian Sea GIWA regional 
assessment 23. University of Kalmar on behalf of United Nations Environment Programme, Kalmar, 
Sweden. 
Ustarbekova, D. (2014). Morpho-ecological features of anchovy kilka under the changing conditions of the 
Caspian Sea. Arid ecosystems 4: 44-48. 
Valipour, A., Khanipour, A. (2006). Kutum, Jewel of the Caspian Sea. Caspian Environment Program. 
 
 
34


Yüklə 10,74 Mb.

Dostları ilə paylaş:
1   ...   13   14   15   16   17   18   19   20   ...   138




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə