Methods for impurity profiling of heroin and cocaine



Yüklə 0,54 Mb.
Pdf görüntüsü
səhifə24/29
tarix14.05.2018
ölçüsü0,54 Mb.
#44322
1   ...   21   22   23   24   25   26   27   28   29

54

Methods for impurity profiling of heroin and cocaine

46. R. P. Mariella and K. K. Brown, “Comment: concurring the cleavage of tertiary

amines with acetic anhydride”, Canadian Journal of Chemistry, vol. 51, 1973, p. 2177.

47. T. Tamminen and others, “Indoloquinolizidine iminium species formed under the mod-

ified Polonovski reaction conditions”, Tetrahedron, vol. 45, No. 9 (1989), pp. 2683-2692.

48. L. Strömberg and others, “Heroin impurity profiling: a harmonization study for ret-

rospective comparisons”, Forensic Science International, vol. 114, No. 2 (2000),

pp. 67-88.

49. J. F. Casale and R. W. Waggoner, Jr. “A chromatographic impurity signature profile

analysis for cocaine using capillary gas chromatography”, Journal of Forensic Sciences,

vol. 36, No. 5 (1991), pp. 1312-1330.

50. J. M. Moore and others, “Capillary gas chromatographic-electron capture detection of

coca-leaf-related impurities in illicit cocaine: 2,4-diphenylcyclobutane-1,3-dicarboxylic

acids, 1,4-diphenylcyclobutane-2,3-dicarboxylic acids and their alkaloidal precursors,

the truxillines”, Journal of Chromatography A, vol. 410, 1987, pp. 297-318. 

51. J. M. Moore and D. A. Cooper, “The application of capillary gas chromatography-

electron capture detection in the comparative analyses of illicit cocaine samples”,

Journal of Forensic Sciences, vol. 38, No. 6 (1993), pp. 1286-1304.

52. J. M. Moore, J. F. Casale and D. A. Cooper, “Comparative determination of total 

isomeric truxillines in illicit, refined, South American cocaine hydrochloride using

capillary gas chromatography-electron capture detection”, Journal of Chromatography



A, vol. 756, No. 1-2 (1996), pp. 193-201.

53. L. Rivier, “Analysis of alkaloids in leaves of cultivated Erythroxylum and characteriza-

tion of alkaline substances used during coca chewing”, Journal of Ethnopharmacology,

vol. 3, Nos. 2-3 (1981), pp. 313-335.

54. J. M. Moore and J. F. Casale, “Cocaine profiling methodology: recent advances”,

Forensic Science Review, vol. 10, 1998, pp. 13-46.

55. H. Neumann and T. Holdermann, “Comparison of cocaine samples by isotope ratio

mass spectrometry (1998-2001)”, unpublished manuscript.

56. H. Neumann and M. Gloger, “Profiling of illicit heroin samples by high-resolution

capillary gas chromatography for forensic application”, Chromatographia, vol. 16,

1982, pp. 261-264.

57. I. S. Lurie and others, “Analysis of manufacturing by-products and impurities in illicit

cocaine via high-performance liquid chromatography and photodiode array detection”,



Journal of Chromatography A, vol. 405, 1987, pp. 273-281.


ANNEX I

SUPPLEMENTARY INFORMATION 

(FOR BOTH HEROIN AND COCAINE)

Physical examination of seizures

The physical examination of seizures has considerable value in establishing a possible 

linkage between samples. In that regard, the detailed examination of packaging materials

has proved particularly useful. The following brief outline provides the basis for one suc-

cessful approach:

(a)

Encode a description of known sample history; 



(b)

Encode a description of packaging to include:

(i)

Appearance of packaging material (colour, design, etc.);



(ii)

Number of wrapping layers;

(iii)

Adhesives;



(iv)

Chemical analysis of packaging materials.



X-ray diffraction

This is a well established method of acquiring information on cutting agents. The tech-

nique is especially useful for inorganic components. For some organic compounds, crystal

polymorphism can be a problem.



55



ANNEX II

IMPURITIES IN HEROIN AND COCAINE

AND THEIR “SOURCES”

A.

Impurities in heroin and their sources

Detailed information on the primary alkaloidal constituents of heroin is available in the

United Nations manual Recommended Methods for Testing Opium, Morphine and Heroin:

Manual for Use by National Drug Testing Laboratories (ST/NAR/29/Rev.1).

In the tables below, major components are > 1% by weight (w/w); minor components

are usually < 1% w/w; and trace components are usually < 0.1% w/w (typically requiring

an extraction step).



Table 1.

Alkaloidal impurities in heroin and their sources

(a)

Major and minor components

Typical source

Acetylcodeine

Opium, codeine + Ac

2

O



a

3-O-Acetylmorphine

Opium, morphine + Ac

2

O



6-O-Acetylmorphine

Heroin + hydrolysis 

(small quantities from morphine + Ac

2

O) 



Codeine

Opium


Heroin (diacetylmorphine, diamorphine)

Opium, morphine + Ac

2

O

Morphine



Opium

Noscapine  {levo} narcotine – {racemic}

Opium

Papaverine



Opium

(b)

Heroin trace-level impurities

Typical source

(1R,9S)-1-Acetoxy-N-acetyl-

1,9-dihydro-anhydronornarceine

Noscapine + Ac

2

O

4-Acetoxy-3,6-dimethoxy-5-



[2-(N-methyl-acetamido)]ethylphenanthrene

Thebaine + Ac

2

O

4-Acetoxy-3,6-dimethoxy-8-



[2-(N-methyl-acetamido)]ethylphenanthrene

Thebaine + Ac

2

O

Delta



5,7,9(14)

-N-Acetyldesthebaine =unstable=

Thebaine + Ac

2

O



(E)-N-Acetylanhydronornarceine

Noscapine + Ac

2

O

(Z)-N-Acetylanhydronornarceine



Noscapine + Ac

2

O



N-Acetylnorlaudanosine

Norlaudanosine + Ac

2

O

N-Acetylnormorphine



Morphine + O

2

b

+ Ac

2

O + hydrolysis



N-Acetylnornarcotine 

Noscapine + O

2

+ Ac


2

O

4-O-Acetylthebaol



c

Thebaine + Ac

2

O

57




Yüklə 0,54 Mb.

Dostları ilə paylaş:
1   ...   21   22   23   24   25   26   27   28   29




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə