Proceedings of the International rilem conference Materials, Systems and Structures in Civil Engineering 2016



Yüklə 8,6 Mb.
Pdf görüntüsü
səhifə20/175
tarix19.07.2018
ölçüsü8,6 Mb.
#56746
1   ...   16   17   18   19   20   21   22   23   ...   175

27

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

dissolution-induced creep. Finally, simulation results show that our approach can predict 



various mesoscale mechanisms of HP formation and clarify how these affect the hydration 

rate. Overall, this is a first step in developing nanoscale simulations that can contribute to the 

challenge of understanding and controlling the formation, setting, and chemo-mechanical 

degradation of concrete. 

 

 

Acknowledgements  



 

The authors thank the TU1404 COST Action “Towards the next generation of standards for 

service life of cement-based materials and structures”, for supporting the presentation of this 

work at the MSSCE 2016 Conference. 

 

References 

 

[1]



 

Taylor, H. F. W., Cement chemistry, Thomas Telford (1997) 

[2]

 

Bullard, J. W. et al, Mechanisms of cement hydration, Cem Concr Res 41 (2011), 1208-



1223 

[3]


 

Van Breugel, K., Numerical simulation of hydration and microstructural development in 

hardening cement-based materials:(II) applications. Cem Concr Res 25 (1995), 522-530. 

[4]


 

Bentz, D. P. CEMHYD3D: A three-dimensional cement hydration and microstructure 

development modelling package. Version 2.0, National Institute of Standards and 

Technology Interagency Report 7232 (2000). 

[5]

 

Bishnoi, S., and Scrivener, K. L., μic: A new platform for modelling the hydration of 



cements. Cem Concr Res 39 (2009), 266-274. 

[6]


 

Bullard, J.W., et al., A parallel reaction-transport model applied to cement hydration and 

microstructure development. Model. Simul Mater Sci Eng 18 (2010), 025007. 

[7]


 

Thomas, J. J., et al, Modeling and simulation of cement hydration kinetics and 

microstructure development, Cem Concr Res 41 (2011), 1257-1278. 

[8]


 

Masoero, E., Thomas, J. J., and Jennings, H. M., A Reaction Zone Hypothesis for the 

Effects of Particle Size and 

C3S, J Am Ceram Soc 97 (2014), 967-975 

[9]

 

Bishnoi, S., Geometric limitations of nucleation and growth models: Revisiting the 



impingement assumption. Cem Concr Res 46 (2013), 30-40 

[10]


 

Manzano, H., et al, Shear deformations in calcium silicate hydrates. Soft Matter 9 (2013), 

7333-7341 

[11]


 

Jennings, H., et al, Water isotherms, shrinkage and creep of cement paste: hypotheses, 

models and experiments, Mechanics and Physics of Creep, Shrinkage, and Durability of 

Concrete (2013), 134-141 

[12]

 

Pinson, M. B., et al, Hysteresis from Multiscale Porosity: Modeling Water Sorption and 



Shrinkage in Cement Paste, Phys Rev Appl 3 (2015), 064009 

[13]


 

Masoero, E., et al, Kinetic simulation of the logarithmic creep of cement, Mechanics and 

Physics of Creep, Shrinkage, and Durability of Concrete: A Tribute to Zdenk P. Bazant, 

(2013), 166-173. 

[14]

 

te Creep, Shrinkage and Swelling with Water, 



Hydration, and Damage: Nano-Macro-Chemo, In 10th International Conference on 


28

International RILEM Conference on Materials, Systems and Structures in Civil Engineering 

Conference segment on Service Life of Cement-Based Materials and Structures 

22-24 August 2016, Technical University of Denmark, Lyngby, Denmark 

 

Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete 



Structures (2015) 

[15]


 

Gonzalez-Teresa, R., et al, Structural models of randomly packed Tobermorite-like 

spherical particles: A simple computational approach, Materiales de construccion 60 

(2010), 7-15 

[16]

 

Masoero, E., et al, Nanostructure and nanomechanics of cement: polydisperse colloidal 



packing, Phys Rev Lett 109 (2012), 155503 

[17]


 

González-Teresa, R., et al, Nanoscale texture development of CSH gel: A computational 

model for nucleation and growth, Appl Phys Lett 103 (2013), 234105 

[18]


 

Masoero, E., et al, Nano-scale mechanics of colloidal C–S–H gels, Soft Matter 10 (2014), 

491-499 

[19]


 

Ioannidou, K., et al, Controlling local packing and growth in calcium–silicate–hydrate 

gels, Soft Matter 10 (2014), 1121-1133 

[20]


 

Del Gado, E., et al, A soft matter in construction–Statistical physics approach to 

formation and mechanics of C–S–H gels in cement, Europ. Phys. J. Special Topics 223 

(2014), 2285-2295 

[21]

 

Etzold, M. A., McDonald, P. J., and Routh, A. F., Growth of sheets in 3D 



confinements—a model for the C–S–H meso structure, Cem Concr Res 63 (2014), 137-

142 


[22]

 

Yu, Z., and Lau, D., Nano-and mesoscale modeling of cement matrix, Nanoscale Res Lett 



10 (2015), 1-6 

[23]


 

Ioannidou, K., et al, Mesoscale texture of cement hydrates, Proc Natl Acad Sci 113 

(2016), 2029-2034 

[24]


 

Lasaga, A. C., Kinetic theory in the earth sciences, Princeton University Press (2014) 

[25]

 

Shvab, I., and Masoero, E., Kinetic simulations of nanoparticle precipitation: the early 



hydration of cement (under review) 

[26]


 

Bullard, J. W., A determination of hydration mechanisms for tricalcium silicate using a 

kinetic cellular automaton model, J Am Ceram Soc 91 (2008), 2088-2097 

[27]


 

Garrault-Gauffinet, S., and Nonat, A., Experimental investigation of calcium silicate 

hydrate (CSH) nucleation, J Crystal Growth 200 (1999), 565-574 

[28]


 

Lothenbach, B. and Winnefeld, F., Thermodynamic modelling of the hydration of 

Portland cement. Cem Concr Res 36 (2006), 209-226. 

[29]


 

Chiang, W.S., Fratini, E., Baglioni, P., Liu, D. and Chen, S.H., Microstructure 

determination of calcium-silicate-hydrate globules by small-angle neutron scattering. The 

J Phys Chem C 116 (2012), 5055-5061. 

[30]

 

Plassard, C., et al, Nanoscale experimental investigation of particle interactions at the 



origin of the cohesion of cement, Langmuir 21 (2005), 7263-7270 

[31]


 

Bullard, J.W., Scherer, G.W. and Thomas, J.J., Time dependent driving forces and the 

kinetics of tricalcium silicate hydration. Cem Concr Res 74 (2015), 26-34 



Yüklə 8,6 Mb.

Dostları ilə paylaş:
1   ...   16   17   18   19   20   21   22   23   ...   175




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə