1. Bərk cisimlərdə istilikkeçirmənin mexanizmi


Yarımkeçirici materiallara qoyulan tələblər



Yüklə 98,78 Kb.
səhifə3/8
tarix30.12.2023
ölçüsü98,78 Kb.
#166816
1   2   3   4   5   6   7   8
fizika 2

Yarımkeçirici materiallara qoyulan tələblər
Müxtəlif yarımkeçirici cihazlar üçün müxtəlif xassələr və keyfiyyətlərə malik materialları lazımdır. Hal-hazırda ən ciddi tələblər tranzistorlar və inteqral mikrosxemlərin istehsalında irəli sürülür. Onların normal işləməsi üçün yarımkeçirici materiallar aşağıdakı tələblərə cavab verməlidir:
Monokristallik quruluş mükəmməl olmalıdır;
Yaxşı nəzərə çarpan donor və ya akseptor xassələrinə malik olmaldır;
Qeyri-əsas yükdaşıyıcıların yaşama müddəti kifayət qədər böyük olmalıdır;
Tələb olunan xüsusi müqavimət əvvəlcədən təmizlənmiş başlanğıc materialına müəyyən aşqarların vurulması ilə alınmalıdır;
Qadağan olunmuş zolağın eni verilən temperatur diapazonunda cihazların stabil işini təmin etməlidir;
Yarımkeçiriciyə vurulan aşqarlar cihazın minimalm işçi temperaturunda artıq tamamilə ionlaşmış olmalıdır;
İstilikkeçirmə əmsalı istiliyin kristalın daxili hissələrindən kənara aparılmasını təmin etməlidir;
Materialın alınma texnologiyası onun kütləvi istehsalı imkanını təmin etməldir.
Əsas yarımkeçirici materiallar
Bərk cisim elektronikası cihazlarının hazırlanmasında son zamanlara qədər ən çox işlənən yarımkeçirici materiallar germanium (Ge) və silisium (Sİ) olmuşdur. Lakin son illər qallium və indiumun arsenidləri, antimonidləri və fosfidləri daha geniş tətbiq olunmağa başlamışdır. Bu materialların içərisində elektron texnikası üçün, o cümlədən bərk cisim eletronikası cihazlarının hazırlnması üçün ən perspektivli material qallium arseniddir (GaAS). Bu, bir tərəfdən onunla bağlıdır ki, germanium və silisiumun inteqral elektronikada istifadə imkanı get-gedə azalır, çünki elekton cihazlarının daha da miniatürləşdirilməsi bərk cisimlərdə ölçü effektləri ilə bağlı prinsipial məhdudiyylərlə qarşılaşır. Digər tərəfdən isə qallium arseniddə (GaAs) yükdaşıyıcıların yürüklüyünün böyük olması və onun əsasında ifrat yüksək sürətlə işləyə bilən inteqral sxemlər, optoelektron qurğular, müxtəlif ifrat yüksək tezlik cihazları, yarımkeçirici lazerlər və s. yaratmağa imkan verir. Onu da qeyd etmək vacibdir ki, əgər germaniumdan hazırlanan tranzistorlar üçün maksimal işçi temperatur +50 ÷ +70 ℃, silisiumdan hazırlanan tranzistorlar üçün +85 ÷ +130 ℃ -dirsə, GaAs əsasında hazırlanan tranzistorlar +250℃ - yə qədər temperaturlarda işləyə bilir.
Beləliklə, silisiumdan qallium arsenidə və yuxarıda salanan AIIIBV birləşmlərinə keçid bu materiallarda yükdaşıyıcıların daha böyük yürüklüyə malik olması səbəbindən inteqral mikrosxemlərin işləmə sürətini artırmağa imkan yarada bilər. İnteqral mikrosxemlərin silisium üçün mümkün olan ən böyük işləmə sürəti əldə edildikdən sonra onun yerini GaAs tutacaq. Bu materialın əsasında artıq idarəedici keçidli və heterokeçidli sahə tranzistorları, yük rabitəli və s. cihazlar yaradılmışdır. GaAs əsasında yaradılan işıq enerjisi çeviricilərinin faydalı iş əmsalı Si əsasında yaradılan cihazınkından yüksəkdir. Bundan başqa, GaAs yüksək temperaturlarda iş qabiliyyətini itirmir, radiasiyaya qarşı daha davamlıdır. Buna görə də GaAs əsasında günəş batareyalarından kosmosda istifadə edilməsinin böyük perspektivləri vardır.


Yüklə 98,78 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə