Title: Relationship between vaginal microbial dysbiosis, inflammation, and pregnancy outcomes in cervical cerclage. One Sentence Summary



Yüklə 139,34 Kb.
səhifə4/5
tarix20.10.2017
ölçüsü139,34 Kb.
#5836
1   2   3   4   5

Statistical analysis


Assessment of differences in outcomes of viability and preterm birth between cerclage suture material groups (braided versus monofilament) was performed using the Fisher exact test for categorical variables and Mann-Whitney for continuous variables. We used a linear mixed-effects model incorporating suture material group, maternal age, parity, previous preterm birth, and hospital location as fixed effects and ethnicity (Asian, Black, or Caucasian) as a random effect to compare braided versus monofilament suture material for the two primary outcomes (viability and preterm birth). The contributions of fixed-effects terms (p-value and F statistics) were calculated using the analysis of variance (ANOVA) with Satterthwaite approximation for degrees of freedom.

Examination of statistical differences between vaginal microbiota were performed at bacterial genera and species levels using the Statistical Analysis of Metagenomic Profiles (STAMP) software package (71). Ward linkage hierarchical clustering analysis (HCA) of bacterial genera was performed using a clustering density threshold of 0.75. Samples were classified according to the percentage of Lactobacillus spp. reads as a proportion of the total number of reads per sample into the following groups: normal (>90% Lactobacillus spp.), intermediate (30-90% Lactobacillus spp.), or dysbiotic (<30% Lactobacillus spp.). Bacterial species data were classified into community state types (CSTs) as described by Ravel et al (25): CST I (L. crispatus), CST II (L. gasseri), CST III (L. iners), CST IV (mixed bacterial species), and CST V (L. jensenii). To identify potential associations between suture material and differing degrees of dysbiosis, an alternative classification of the species data was performed, as described by Borgdorff et al (26) into communities characterized by healthy Lactobacillus spp. dominance, L. iners, or moderate or severe dysbiosis.

The effects of suture material and time from cerclage insertion on bacterial genera, number of species observed and alpha diversity were assessed using One-way ANOVA, Kruskal-Wallis, and Dunn’s multiple comparisons where appropriate.

Linear discriminant analysis (LDA) effect size (LEfSe) method (27) characterized differentially abundant taxonomic features of the two suture materials before and 4 weeks after cerclage insertion. An alpha value of 0.01 was used for factorial Kruskal-Wallis test between classes, and a threshold of 3.0 was used for logarithmic LDA score for discriminative features.

The Wilcoxon signed rank test compared cytokine analyte concentrations before and 4 weeks after cerclage insertion. The Mann-Whitney test was used to test for differences among suture material types. Analyte expression was classified according to the corresponding microenvironments (Fig. 1C), and the Mann-Whitney test compared cytokine expression in the presence of a normal or dysbiotic microbiome.

Cervical vascularization was compared according to suture material from the time of cerclage insertion and as a function of the corresponding bacterial classification, using Kruskal-Wallis and ANOVA multiple comparison analyses where appropriate. We used linear regression to assess for correlations between cervical vascularity, the number of observed species, and Shannon index of alpha diversity, according to suture material.



Supplementary information

Figure S1. Linear mixed effects modeling of retrospective outcome data.

Figure S2. Gestation at birth as a function of suture material used in the prospectively recruited cohort.

Figure S3. Ward hierarchical clustering analysis of species sequence data.

Figure S4. Longitudinal assessment of vaginal bacterial community structure following suture insertion.

Figure S5. In vitro adherence assay of suture material with E. coli or L. jensenii.

Figure S6. Longitudinal comparison of bacterial genera increased following braided suture insertion.

Figure S7. Quantitative PCR assessment of A. vaginae and G. vaginalis at 4 weeks after cerclage

Figure S8. V1-V3 hypervariable region sequence alignment against major vaginal Lactobacillus species

Table S1. Patient demographics for retrospective study cohort.

Table S2. Contributing confounder analysis for non-viable pregnancy and preterm birth <37 weeks.

Table S3. Bacterial genus classification according to time from cerclage

Table S4. Bacterial species classification into community state types according to time from cerclage.

Table S5. Species classification into normal, L. iners dominant, intermediate and severe dysbiosis according to time from cerclage.

Table S6. Mean bacterial counts of Atopobium vaginae and Gardnerella vaginalis before and 4 weeks after cerclage insertion, as assessed by quantitative PCR.

Table S7. Mean fold change in analyte expression detectable in cervico-vaginal fluid before and after cerclage insertion.

Table S8. DNA identity for the V1-V3 region used in the analysis for the 4 main lactobacilli in CST I, II, III, and V.

References and notes
1. L. Liu, S. Oza, D. Hogan, J. Perin, I. Rudan, J. E. Lawn, S. Cousens, C. Mathers, R. E. Black, Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 385, 430-440 (2015); published online EpubJan (10.1016/S0140-6736(14)61698-6).

2. R. L. Goldenberg, J. F. Culhane, J. D. Iams, R. Romero, Epidemiology and causes of preterm birth. The lancet 371, 75-84 (2008).

3. K. Aagaard, J. Ma, K. M. Antony, R. Ganu, J. Petrosino, J. Versalovic, The placenta harbors a unique microbiome. Sci Transl Med 6, 237ra265 (2014); published online EpubMay 21 (10.1126/scitranslmed.3008599).

4. M. Hein, E. V. Valore, R. B. Helmig, N. Uldbjerg, T. Ganz, Antimicrobial factors in the cervical mucus plug. Am J Obstet Gynecol 187, 137-144 (2002); published online EpubJul (

5. P. Gajer, R. M. Brotman, G. Bai, J. Sakamoto, U. M. Schutte, X. Zhong, S. S. Koenig, L. Fu, Z. S. Ma, X. Zhou, Z. Abdo, L. J. Forney, J. Ravel, Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4, 132ra152 (2012); published online EpubMay 2 (10.1126/scitranslmed.3003605).

6. D. A. MacIntyre, M. Chandiramani, Y. S. Lee, L. Kindinger, A. Smith, N. Angelopoulos, B. Lehne, S. Arulkumaran, R. Brown, T. G. Teoh, E. Holmes, J. K. Nicoholson, J. R. Marchesi, P. R. Bennett, The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep 5, 8988 (2015)10.1038/srep08988).

7. R. Romero, S. S. Hassan, P. Gajer, A. L. Tarca, D. W. Fadrosh, L. Nikita, M. Galuppi, R. F. Lamont, P. Chaemsaithong, J. Miranda, T. Chaiworapongsa, J. Ravel, The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2, 4 (2014)10.1186/2049-2618-2-4).

8. T. Yatsunenko, F. E. Rey, M. J. Manary, I. Trehan, M. G. Dominguez-Bello, M. Contreras, M. Magris, G. Hidalgo, R. N. Baldassano, A. P. Anokhin, A. C. Heath, B. Warner, J. Reeder, J. Kuczynski, J. G. Caporaso, C. A. Lozupone, C. Lauber, J. C. Clemente, D. Knights, R. Knight, J. I. Gordon, Human gut microbiome viewed across age and geography. Nature 486, 222-227 (2012); published online EpubJun 14 (10.1038/nature11053).

9. M. G. Dominguez-Bello, E. K. Costello, M. Contreras, M. Magris, G. Hidalgo, N. Fierer, R. Knight, Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107, 11971-11975 (2010); published online EpubJun 29 (10.1073/pnas.1002601107).

10. H. Leitich, H. Kiss, Asymptomatic bacterial vaginosis and intermediate flora as risk factors for adverse pregnancy outcome. Best Pract Res Clin Obstet Gynaecol 21, 375-390 (2007); published online EpubJun (10.1016/j.bpobgyn.2006.12.005).

11. D. B. DiGiulio, B. J. Callahan, P. J. McMurdie, E. K. Costello, D. J. Lyell, A. Robaczewska, C. L. Sun, D. S. Goltsman, R. J. Wong, G. Shaw, D. K. Stevenson, S. P. Holmes, D. A. Relman, Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci U S A 112, 11060-11065 (2015); published online EpubSep 1 (10.1073/pnas.1502875112).

12. A. C. o. O. a. G. ACOG, Practice Bulletin No. 142: Cerclage for the Management of Cervical Insufficiency. Obstetrics & Gynecology 123, 372-379 (2014)10.1097/01.AOG.0000443276.68274.cc).

13. A. Shennan, M. To, RCOG Green-top Guideline No. 60. Royal College of Obstetricians and Gynaecologists, (2011).

14. E. B. Fonseca, E. Celik, M. Parra, M. Singh, K. H. Nicolaides, F. M. F. S. T. S. Group, Progesterone and the risk of preterm birth among women with a short cervix. N Engl J Med 357, 462-469 (2007); published online EpubAug (10.1056/NEJMoa067815).

15. F. Israfil-Bayli, P. Toozs-Hobson, C. Lees, M. Slack, K. M. Ismail, Pregnancy outcome after elective cervical cerclage in relation to type of suture material used. Med Hypotheses 81, 119-121 (2013); published online EpubJul (10.1016/j.mehy.2013.04.003).

16. V. Berghella, T. J. Rafael, J. M. Szychowski, O. A. Rust, J. Owen, Cerclage for short cervix on ultrasonography in women with singleton gestations and previous preterm birth: a meta-analysis. Obstet Gynecol 117, 663-671 (2011); published online EpubMar (

17. Z. Alfirevic, T. Stampalija, D. Roberts, A. L. Jorgensen, Cervical stitch (cerclage) for preventing preterm birth in singleton pregnancy. Cochrane Database Syst Rev 4, CD008991 (2012)10.1002/14651858.CD008991.pub2).

18. Ethicon.Inc, D. L. Dunn, Ed. (www.ethicon.com, 2007), pp. 1-119.

19. M. Quinn, Final report of the MRC/RCOG randomised controlled trial of cervical cerclage. British journal of obstetrics and gynaecology 100, 1154-1155 (1993); published online EpubDec (

20. A. O. Odibo, V. Berghella, M. S. To, O. A. Rust, S. M. Althuisius, K. H. Nicolaides, Shirodkar versus McDonald cerclage for the prevention of preterm birth in women with short cervical length. Am J Perinatol 24, 55-60 (2007); published online EpubJan (10.1055/s-2006-958165).

21. F. Israfil-Bayli, P. Toozs-Hobson, C. Lees, M. Slack, J. Daniels, A. Vince, K. M. Ismail, Cervical cerclage and type of suture material: a survey of UK consultants' practice. J Matern Fetal Neonatal Med 27, 1584-1588 (2014); published online EpubOct (10.3109/14767058.2013.870551).

22. V. Berghella, J. M. Szychowski, J. Owen, G. Hankins, J. D. Iams, J. S. Sheffield, A. Perez-Delboy, D. A. Wing, E. R. Guzman, V. U. T. Consortium, Suture type and ultrasound-indicated cerclage efficacy. J Matern Fetal Neonatal Med 25, 2287-2290 (2012); published online EpubNov (10.3109/14767058.2012.688081).

23. P. Mehta, P. Patel, J. M. Olver, Functional results and complications of Mersilene mesh use for frontalis suspension ptosis surgery. Br J Ophthalmol 88, 361-364 (2004); published online EpubMar (

24. M. Slack, J. S. Sandhu, D. R. Staskin, R. C. Grant, In vivo comparison of suburethral sling materials. Int Urogynecol J Pelvic Floor Dysfunct 17, 106-110 (2006); published online EpubFeb (10.1007/s00192-005-1320-7).

25. J. Ravel, P. Gajer, Z. Abdo, G. M. Schneider, S. S. Koenig, S. L. McCulle, S. Karlebach, R. Gorle, J. Russell, C. O. Tacket, R. M. Brotman, C. C. Davis, K. Ault, L. Peralta, L. J. Forney, Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108 Suppl 1, 4680-4687 (2011); published online EpubMar 15 (10.1073/pnas.1002611107).

26. H. Borgdorff, E. Tsivtsivadze, R. Verhelst, M. Marzorati, S. Jurriaans, G. F. Ndayisaba, F. H. Schuren, J. H. van de Wijgert, Lactobacillus-dominated cervicovaginal microbiota associated with reduced HIV/STI prevalence and genital HIV viral load in African women. ISME J 8, 1781-1793 (2014); published online EpubSep (10.1038/ismej.2014.26).

27. N. Segata, J. Izard, L. Waldron, D. Gevers, L. Miropolsky, W. S. Garrett, C. Huttenhower, Metagenomic biomarker discovery and explanation. Genome Biol 12, R60 (2011)10.1186/gb-2011-12-6-r60).

28. N. C. Yilmaz, A. B. Yigiter, Z. N. Kavak, B. Durukan, H. Gokaslan, Longitudinal examination of cervical volume and vascularization changes during the antepartum and postpartum period using three-dimensional and power Doppler ultrasound. Journal of perinatal medicine 38, 461-465 (2010); published online EpubSep (10.1515/JPM.2010.087).

29. D. Abbott, M. To, A. Shennan, Cervical cerclage: a review of current evidence. The Australian & New Zealand journal of obstetrics & gynaecology 52, 220-223 (2012); published online EpubJun (10.1111/j.1479-828X.2012.01412.x).

30. T. J. Rafael, V. Berghella, Z. Alfirevic, Cervical stitch (cerclage) for preventing preterm birth in multiple pregnancy. Cochrane Database Syst Rev 9, CD009166 (2014)10.1002/14651858.CD009166.pub2).

31. T. Rafaeli-Yehudai, R. Kessous, B. Aricha-Tamir, E. Sheiner, O. Erez, M. Meirovitz, M. Mazor, A. Y. Weintraub, The effect of cervical cerclage on pregnancy outcomes in women following conization. J Matern Fetal Neonatal Med 27, 1594-1597 (2014); published online EpubOct (10.3109/14767058.2013.871254).

32. M. Y. Shin, E. S. Seo, S. J. Choi, S. Y. Oh, B. G. Kim, D. S. Bae, J. H. Kim, C. R. Roh, The role of prophylactic cerclage in preventing preterm delivery after electrosurgical conization. J Gynecol Oncol 21, 230-236 (2010); published online EpubDec (10.3802/jgo.2010.21.4.230).

33. K. H. Nam, J. Y. Kwon, Y. H. Kim, Y. W. Park, Pregnancy outcome after cervical conization: risk factors for preterm delivery and the efficacy of prophylactic cerclage. J Gynecol Oncol 21, 225-229 (2010); published online EpubDec (10.3802/jgo.2010.21.4.225).

34. A. O. Odibo, C. Farrell, G. A. Macones, V. Berghella, Development of a scoring system for predicting the risk of preterm birth in women receiving cervical cerclage. J Perinatol 23, 664-667 (2003); published online EpubDec (10.1038/sj.jp.7211004).

35. J. D. Iams, Clinical practice. Prevention of preterm parturition. N Engl J Med 370, 254-261 (2014); published online EpubJan 16 (10.1056/NEJMcp1103640).

36. M. J. Henry-Stanley, D. J. Hess, A. M. Barnes, G. M. Dunny, C. L. Wells, Bacterial contamination of surgical suture resembles a biofilm. Surgical infections 11, 433-439 (2010); published online EpubOct (10.1089/sur.2010.006).

37. S. Katz, M. Izhar, D. Mirelman, Bacterial adherence to surgical sutures. A possible factor in suture induced infection. Annals of surgery 194, 35-41 (1981); published online EpubJul (

38. X. Wang, C. S. Buhimschi, S. Temoin, V. Bhandari, Y. W. Han, I. A. Buhimschi, Comparative microbial analysis of paired amniotic fluid and cord blood from pregnancies complicated by preterm birth and early-onset neonatal sepsis. PLoS One 8, e56131 (2013)10.1371/journal.pone.0056131).

39. C. S. Buhimschi, V. Bhandari, B. D. Hamar, M. O. Bahtiyar, G. Zhao, A. K. Sfakianaki, C. M. Pettker, L. Magloire, E. Funai, E. R. Norwitz, M. Paidas, J. A. Copel, C. P. Weiner, C. J. Lockwood, I. A. Buhimschi, Proteomic profiling of the amniotic fluid to detect inflammation, infection, and neonatal sepsis. PLoS Med 4, e18 (2007); published online EpubJan (10.1371/journal.pmed.0040018).

40. S. L. Hillier, M. A. Krohn, E. Cassen, T. R. Easterling, L. K. Rabe, D. A. Eschenbach, The role of bacterial vaginosis and vaginal bacteria in amniotic fluid infection in women in preterm labor with intact fetal membranes. Clin Infect Dis 20 Suppl 2, S276-278 (1995); published online EpubJun (

41. Y. W. Han, T. Shen, P. Chung, I. A. Buhimschi, C. S. Buhimschi, Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol 47, 38-47 (2009); published online EpubJan (10.1128/JCM.01206-08).

42. J. L. Patterson, A. Stull-Lane, P. H. Girerd, K. K. Jefferson, Analysis of adherence, biofilm formation and cytotoxicity suggests a greater virulence potential of Gardnerella vaginalis relative to other bacterial-vaginosis-associated anaerobes. Microbiology 156, 392-399 (2010); published online EpubFeb (10.1099/mic.0.034280-0).

43. J. P. Trama, K. E. Pascal, J. Zimmerman, M. J. Self, E. Mordechai, M. E. Adelson, Rapid detection of Atopobium vaginae and association with organisms implicated in bacterial vaginosis. Mol Cell Probes 22, 96-102 (2008); published online EpubApr (10.1016/j.mcp.2007.08.002).

44. C. L. Haggerty, S. L. Hillier, D. C. Bass, R. B. Ness, P. I. D. Evaluation, i. Clinical Health study, Bacterial vaginosis and anaerobic bacteria are associated with endometritis. Clin Infect Dis 39, 990-995 (2004); published online EpubOct 1 (10.1086/423963).

45. T. E. Taha, D. R. Hoover, G. A. Dallabetta, N. I. Kumwenda, L. A. Mtimavalye, L. P. Yang, G. N. Liomba, R. L. Broadhead, J. D. Chiphangwi, P. G. Miotti, Bacterial vaginosis and disturbances of vaginal flora: association with increased acquisition of HIV. AIDS 12, 1699-1706 (1998); published online EpubSep 10 (

46. S. L. Hillier, R. P. Nugent, D. A. Eschenbach, M. A. Krohn, R. S. Gibbs, D. H. Martin, M. F. Cotch, R. Edelman, J. G. Pastorek, 2nd, A. V. Rao, et al., Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. The Vaginal Infections and Prematurity Study Group. N Engl J Med 333, 1737-1742 (1995); published online EpubDec 28 (10.1056/NEJM199512283332604).

47. A. Machado, N. Cerca, Influence of Biofilm Formation by Gardnerella vaginalis and Other Anaerobes on Bacterial Vaginosis. J Infect Dis 212, 1856-1861 (2015); published online EpubDec 15 (10.1093/infdis/jiv338).

48. S. Chakravorty, D. Helb, M. Burday, N. Connell, D. Alland, A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69, 330-339 (2007); published online EpubMay (10.1016/j.mimet.2007.02.005).

49. S. Srinivasan, D. N. Fredricks, The human vaginal bacterial biota and bacterial vaginosis. Interdisciplinary perspectives on infectious diseases 2008, 750479 (2008)10.1155/2008/750479).

50. G. Rizzo, A. Capponi, A. Vlachopoulou, E. Angelini, C. Grassi, C. Romanini, The diagnostic value of interleukin-8 and fetal fibronectin concentrations in cervical secretions in patients with preterm labor and intact membranes. Journal of perinatal medicine 25, 461-468 (1997).

51. M. Sakai, Y. Sasaki, S. Yoneda, T. Kasahara, T. Arai, M. Okada, H. Hosokawa, K. Kato, Y. Soeda, S. Saito, Elevated interleukin-8 in cervical mucus as an indicator for treatment to prevent premature birth and preterm, pre-labor rupture of membranes: a prospective study. American journal of reproductive immunology 51, 220-225 (2004); published online EpubMar (10.1111/j.1600-0897.2004.00145.x).

52. B. D. Taylor, C. B. Holzman, R. N. Fichorova, Y. Tian, N. M. Jones, W. Fu, P. K. Senagore, Inflammation biomarkers in vaginal fluid and preterm delivery. Hum Reprod 28, 942-952 (2013); published online EpubApr (10.1093/humrep/det019).

53. A. Dubicke, A. Akerud, M. Sennstrom, R. R. Hamad, B. Bystrom, A. Malmstrom, G. Ekman-Ordeberg, Different secretion patterns of matrix metalloproteinases and IL-8 and effect of corticotropin-releasing hormone in preterm and term cervical fibroblasts. Mol Hum Reprod 14, 641-647 (2008); published online EpubNov (10.1093/molehr/gan060).

54. G. Weiss, L. T. Goldsmith, Mechanisms of relaxin-mediated premature birth. Ann N Y Acad Sci 1041, 345-350 (2005); published online EpubMay (10.1196/annals.1282.055).

55. R. De Diego, J. Sabrià, A. Vela, D. Rodríguez, M. D. Gómez, Role of 3-dimensional power Doppler sonography in differentiating pregnant women with threatened preterm labor from those with an asymptomatic short cervix. J Ultrasound Med 33, 673-679 (2014); published online EpubApr (10.7863/ultra.33.4.673).

56. B. T. Nguyen, V. Minkiewicz, E. McCabe, J. Cecile, C. N. Mowa, Vascular endothelial growth factor induces mRNA expression of pro-inflammatory factors in the uterine cervix of mice. Biomed Res 33, 363-372 (2012); published online EpubDec (

57. J. Van Steenwinckel, A. L. Schang, S. Sigaut, V. Chhor, V. Degos, H. Hagberg, O. Baud, B. Fleiss, P. Gressens, Brain damage of the preterm infant: new insights into the role of inflammation. Biochem Soc Trans 42, 557-563 (2014); published online EpubApr (10.1042/BST20130284).

58. H. Hagberg, C. Mallard, D. M. Ferriero, S. J. Vannucci, S. W. Levison, Z. S. Vexler, P. Gressens, The role of inflammation in perinatal brain injury. Nat Rev Neurol 11, 192-208 (2015); published online EpubApr (10.1038/nrneurol.2015.13).

59. C. Blackwell, The Role of Infection and Inflammation in Stillbirths: Parallels with SIDS? Front Immunol 6, 248 (2015)10.3389/fimmu.2015.00248).

60. E. Tolockiene, E. Morsing, E. Holst, A. Herbst, A. Ljungh, N. Svenningsen, I. Hagerstrand, L. Nystrom, Intrauterine infection may be a major cause of stillbirth in Sweden. Acta Obstet Gynecol Scand 80, 511-518 (2001); published online EpubJun (

61. R. L. Goldenberg, C. Thompson, The infectious origins of stillbirth. Am J Obstet Gynecol 189, 861-873 (2003); published online EpubSep (

62. J. D. Iams, R. L. Goldenberg, P. J. Meis, B. M. Mercer, A. Moawad, A. Das, E. Thom, D. McNellis, R. L. Copper, F. Johnson, J. M. Roberts, The length of the cervix and the risk of spontaneous premature delivery. National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N Engl J Med 334, 567-572 (1996); published online EpubFeb (10.1056/NEJM199602293340904).

63. I. A. McDonald, Incompetant cervix as a cause of recurrent abortion. BJOG: An International Journal of Obstetrics & Gynaecology 70, 105-109 (1963).

64. A. Sundquist, S. Bigdeli, R. Jalili, M. L. Druzin, S. Waller, K. M. Pullen, Y. Y. El-Sayed, M. M. Taslimi, S. Batzoglou, M. Ronaghi, Bacterial flora-typing with targeted, chip-based Pyrosequencing. BMC microbiology 7, 108 (2007)10.1186/1471-2180-7-108).

65. J. J. Kozich, S. L. Westcott, N. T. Baxter, S. K. Highlander, P. D. Schloss, Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and environmental microbiology 79, 5112-5120 (2013); published online EpubSep (10.1128/AEM.01043-13).

66. Q. Wang, G. M. Garrity, J. M. Tiedje, J. R. Cole, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and environmental microbiology 73, 5261-5267 (2007); published online EpubAug (10.1128/AEM.00062-07).

67. R. C. Edgar, Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460-2461 (2010); published online EpubOct 1 (10.1093/bioinformatics/btq461).

68. D. N. Fredricks, T. L. Fiedler, K. K. Thomas, C. M. Mitchell, J. M. Marrazzo, Changes in vaginal bacterial concentrations with intravaginal metronidazole therapy for bacterial vaginosis as assessed by quantitative PCR. J Clin Microbiol 47, 721-726 (2009); published online EpubMar (10.1128/JCM.01384-08).

69. M. Zozaya-Hinchliffe, R. Lillis, D. H. Martin, M. J. Ferris, Quantitative PCR assessments of bacterial species in women with and without bacterial vaginosis. J Clin Microbiol 48, 1812-1819 (2010); published online EpubMay (10.1128/JCM.00851-09).

70. O. de Castro Costa Neto, L. A. Lobo, N. L. Iorio, M. de Fatima Carvalho Vasconcelos, L. C. Maia, P. N. Tannure, A. G. Antonio, Oral bacteria adherence to suture threads: an in vitro study. Oral Maxillofac Surg 19, 275-280 (2015); published online EpubSep (10.1007/s10006-015-0487-4).

71. D. H. Parks, R. G. Beiko, Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26, 715-721 (2010); published online EpubMar 15 (10.1093/bioinformatics/btq041).


Yüklə 139,34 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə