Understanding the problems of inland waters: case study



Yüklə 10,74 Mb.
Pdf görüntüsü
səhifə37/138
tarix07.07.2018
ölçüsü10,74 Mb.
#53616
1   ...   33   34   35   36   37   38   39   40   ...   138

approximating the runoff changes in this time period is generally positive and statistically 
valid. The break point of the curve is the period 1978-2007, when the Volga runoff measured 
on average 260.3 km
3
/year. In contrast, in 1968-2015 interval, the Volga flow made on 
average 248.8 km
3
/year. 
http://www.caspcom.com/files/climate/climate_en/River_flow/Volga/1_stok.pdf
 
The smoothed fluctuations of the Ural flow in 1961-2015 were synchronous to those of the 
Volga flow: it was increasing for some time, and then fell. The breaking point was as well in 
1978-2007, when the Ural runoff measured on average 8.68 km
3
/year. In contrast, in 1968-
2015 interval, the runoff of the river was on average 8.28 km
3
/year. 
http://www.caspcom.com/files/climate/climate_en/River_flow/Volga/1_stok.pdf
  
The flow of the Kura river in 1961-2010 was decreasing (negative linear trend, valid 
statistically at p=0.01). The sharp decline was observed in the first half of this period. In 1961-
1990 the flow of this river made on average 14.7 km
3
, while in 1970-1999 it measured 13.2 
km
3
. In the following 30-year periods, the flow stabilized at this average 
value
http://www.caspcom.com/files/climate/climate_en/River_flow/Kura/1_stok.pdf
  
The analysis of annual anomalies and increments of the river runoff and its average growth 
rates did not reveal any signs of its future growth. However, according to the information 
published in CASPCOM Bulletin, the Volga runoff in 2016 after an extended low-water period 
rose to 261 km
3
, which is by 5% higher, than the average for 1961-2015. 
http://www.caspcom.com/files/CASPCOM_bulletin14_2.pdf
  Currently, this is the only fact in 
favour of the desired and probable increase of the surface runoff to the Caspian Sea 
The changes of the water flow to the Caspian Sea in 1961-2015 were accompanied by its 
level fluctuations. This fact is confirmed by the data of the Caspian Sea level catalogue 
created by CASPCOM. 
http://www.caspcom.com/index.php?razd=sess&lang=2&sess=17&podsess=62
    Throughout 
1961-1977 the sea level fell by 52 cm, and its highest fall rate (9 cm/year) was recorded in 
1971-1977. Then, the sea level was rising at a high rate (14 cm/year) for a long period of time 
(from 1978 to 1995).  In 1996 the sea level started to fall: first at a slow rate (by 10 cm for 
1996-2005), and then rapidly (by 11 cm/year in 2006-2015). In 2016 the sea level finally 
stabilized at the elevation of -28.0 m B.S. 
Conclusion 
Summarizing the facts stated above, we can say that in the last quarter of the 20th century 
the Caspian Sea was affected by the global climate warming, which lead to the increase of air 
temperature above its water area by 0.7-0.8
о
С, while the surface water temperature rose by 
0.4-0.5 
о
С. First, the warming was accompanied with the rise of the Volga and the Ural runoff 
to the Caspian Sea (whereas the Kura flow reduced) and a rapid growth of the sea level. The 
flow to the sea decreased at the turn of the century, and the sea level started to fall slowly 
first, and rapidly since 2006. Simultaneously, the warming rate decreased, which resulted in 
normalization of the runoff in 2016-2017 and stabilization of the sea level. 
 
83


Assessment of Freshwater Ecosystem Services connected to the 
HPP dams in Azerbaijan 
Rovshan Abbasov
 
1
Environmental Research Centre, Khazar University, Azerbaijan 
 
Keywords:
 sustainable ecosystem management, targeted scenario approach, irrigation, flood management 
ABSTRACT 
This study focuses on freshwater ecosystem services that support hydropower plants (HPP)/dams 
development in the Kura-Aras River Basin in Azerbaijan. The study assesses the HPP/dams 
sector, and reviews additional sectors including nature-based tourism, irrigated agriculture, and 
drinkable water supply. In addition, the study briefly discusses the role and value of ES that help 
to mitigate natural hazards related to poor ecosystems management. 
The study used a basic Targeted Scenario Analysis (TSA) approach. The TSA assesses current 
“business as usual (BAU)” ecosystems management practices and its current value of ecosystems 
services under BAU. It uses sector output indicators and compares with potential “sustainable 
ecosystems management (SEM)” outputs to assess losses and potential gains (or losses) of 
shifting from BAU to SEM. The BAU approach is characterized by a focus on short-term gains 
(e.g., < 10 years), externalization of impacts and their costs, and little or no recognition of the 
economic value of ES, which are typically depleted or degraded. Under SEM, the focus is on 
long-term gains (> 10 years); also under SEM, the costs of impacts are internalized. Ecosystem 
services are maintained, thus generating potential for a long-term flow of ecosystem goods and 
services that can enter into decision making. SEM practices tend to support ecosystem 
sustainability as a practical and cost-effective way to realize long-run profits.
 
84


The main features of temperature changes
, occurring over the territory of
Caspian Sea in Azerbaijan
S.H. Safarov
1
, J.S. Huseynov
2
, I.V. Ibrahimova
3
, E.S. Safarov
4
1,2,3
MENR, National Department of Hydrometeorology
4
ANAS, Institute of the Geography
Keywords: Global warming, the anomaly of the temperature, the
difference-integral curve
.
Introduction
The  global  warming,  occurring  last  years,  and  the  climate  changes,  connected  with  it,  are
reflecting  their  results  over  the  great  part  of  territories  of  the  world,  including  Azerbaijan.
Despite of the fact that there observes the common increase of the air temperature over the
great part of the territory of the world, the quantity of this increase is different for different
territories  (Climate  Changes,  2014).  For  example,  the  increase  of  the  temperature  over  the
high latitudes of North hemisphere is more sensitive (Climate Changes, 2014; Vilesov, 2017).
On the other hand, the anomalies of the temperature are differing in different months of the
year and the study of the change character of these anomalies for different periods makes a
big deal.
In  regions  over  the  Caspian  Sea,  especially,  in  western  territories  of  the  sea,  the  climate
change of last years has been fewer studied. On the base of researches, held over the eastern
coastal territories of Middle and North Caspian Sea (Kazakhstan), there has been defined that
over 1990-2015 and
 
2000-2015 periods the mean annual air temperature has been increased
correspondently,  on  1.0-1.6  and  1.4-2.0  degree  in  some  hydrometeorological  stations  in
comparison with base period. When we say the base period we mean the period, from the
beginning to act of the observation station to 1989 (Ivkina et al, 2017).
The aim of this paper is to study the character of contemporary temperature changes over
western coastal areas of the Caspian Sea in Azerbaijan.
The method and materials of research work
Naturally, the coastal zones of Caspian Sea in Azerbaijan are divided into two parts: western
part of Middle Caspian Sea and western part of Southern Caspian Sea.
In the research work there have been used observation information of the air temperature
for  1961-2016  in  Khachmaz,  Sumgayit,  Pirallahy,  Mashtaga,  Neftchala  and  Lankaran
hydrometeorological stations, also Neft Dashlari and Chylov sea stations. By the aim to define
the character of changes in the temperature over discussed period there have been calculated
and compared average annual and months temperature anomalies for some periods (1991-
2004, 2005-2016 and 1992-2016) in comparison with the climate norm (1961-1990) (table 1).
There  have  been  built  temporal  change  graphics  and  corresponding  trend  curves  of  the  air
temperature for each station (Fig.1).
For the comprehensive research of the change character of the temperature there has been
built the differenсe-integral curve, calculated by the formula (1), for each station (Fig.2):
                                              
),
(
)
(
1
n
t
i
i
T
T
t
f

=

=
                                      
(1)
 
85


Yüklə 10,74 Mb.

Dostları ilə paylaş:
1   ...   33   34   35   36   37   38   39   40   ...   138




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə