Kadmium által indukált élettani változások kukoricában pál magda



Yüklə 0,87 Mb.
səhifə13/13
tarix02.03.2018
ölçüsü0,87 Mb.
#28666
1   ...   5   6   7   8   9   10   11   12   13

7. ÖSSZEFOGLALÁS


  • Munkánk során kimutattuk, hogy az általunk beállított kísérleti körülmények között, a 10, 25 és 50 M-os kadmiumkezelésre a kukoricanövény levele és gyökere eltérő módon reagált. A levélben a kadmiumkezelés oxidatív stressz indukált, amit a vizsgált 3 stresszmarker értékeinek változása igazolt, míg a gyökérben nem volt kimutatható az oxidatív stressz tünete.

  • Vizsgálataink azt mutatták, hogy a 7 napos kadmiumkezelés során kukorica levelében a PG és PE, gyökerében az MGDG, PG, PE és DGDG lipidfrakciók zsírsav összetétele megváltozott. Megállapítottuk, hogy különösen az alacsonyabb (10 és 25 M) koncentrációjú kadmiumkezelést követően, a rövid szénatomszámú, telített zsírsavak mennyiségének csökkenésével nőtt a hosszabb szénatomszámú, telítetlen zsírsavak aránya, amit a DBI és a telítetlenségi százalék megemelkedése követett.

  • Bár a kadmiumkezelés nem befolyásolta számottevően a levél cisztein- és glutationtartalmát, de jelentősen megemelte a -glutamil-cisztein koncentrációját. A gyökérben a -glutamil-cisztein mennyisége szintén megemelkedett, de a GSH mennyisége drasztikusan csökkent.

  • A levélben a kadmium hatására a GR (4. napon) és a POD (7. napon) enzimek aktiválódtak, míg a gyökérben nem tapasztaltuk az antioxidáns enzimek indukcióját.

  • A kadmiumkezelés hatására a kukorica levelében az in vivo PC2 szint nem változott, de az in vitro PCS aktivitás megemelkedett. A kadmiummal kezelt növények gyökérében az in vivo PC2 szint megemelkedett, míg az in vitro PCS aktivitás csökkent a kontrollhoz képest. Megerősítettük, hogy a gyökérben a PCS enzim jelenléte konstans, a levélben pedig kadmium jelenléte szükséges szintézisének indukciójához.

  • Kimutattuk, hogy a kadmium 7 nap elteltével a levélben a SA felhalmozódás mellett, BA és o-HCA akkumulációt is indukált mind szabad, mind kötött formában, és a megemelkedett szalicilsav szintézis feltételezhetően benzoesavon keresztül történt. A gyökérben csak az 50 M-os kezelés volt hatással a szabad o-HCA és kötött BA szintjére.



8. SUMMARY


  • It was found that the leaves and roots of maize plants gave different responses to 10, 25 and 50 M cadmium treatments. While the cadmium induced oxidative stress in the leaves was confirmed by the changes in the value of the three stress markers examined, no such oxidative stress could be observed in the roots.

  • In leaves the fatty acid composition of PG and PE changed, whereas in the roots the fatty acid composition of MGDG, PG, PE and DGDG were modified during 7 days of cadmium treatment. It was established that the rate of unsaturated fatty acids with longer carbon chain increased by the reduction in the amount of saturated fatty acids with shorter carbon chain, which was followed by a rise in DBI and unsaturation rates, especially after cadmium treatments of lower concentrations (10 and 25 M).

  • Though cadmium treatment did not have a considerable effect on the cysteine and glutathione contents of the leaves, however, it significantly increased the concentration of -glutamyl-cysteine. In the roots, there was also a rise in the amount of -glutamyl-cysteine, but GSH content decreased drastically.

  • Due to the cadmium stress, GR and POD enzymes were activated in the leaves on day 4 and day 7, respectively. However, the induction of antioxidant enzymes could not be observed in the roots.

  • In the maize leaves, the in vivo PC2 level did not change as a result of cadmium treatment, but there was an increase in the in vitro PCS activity. In the roots of plants treated with cadmium, a rise in the in vivo PC2 level was detected, however, the in vitro PCS activity decreased as compared to that of the control. Our results verify that the presence of PCS enzyme is constant in the roots, while in the leaves the synthesis of PCS enzyme is induced by cadmium.

  • It was demonstrated that after 7 days of treatment, Cd increased the levels of free and bound forms of BA, o-HCA and SA in the leaves. The intermediate element of increased salicylic acid synthesis is supposed to be benzoic acid. In the roots, only the 50 µM rate of Cd caused changes in the free o-HCA acid and bound BA content.

9. Felhasznált irodalom

Abarca, D., Martín, M., Sabater, B. (2001): Differential leaf stress responses in young and senescent plants. Physiol. Plant., 113: 409-415.

Ádám, A., Bestwick, C.S., Barna, B., Mansfield, J.W. (1995): Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaseolicola. Planta, 197: 240-249.

Al-Hakimi, A.M.A., Hamada, A.M. (2001): Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamine or sodium salicylate. Biol. Plant., 44: 253-261.

Alvarez, M.E. (2000): Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol. Biol., 44: 429-442.

Ananieva, E.A., Alexieva, V.S., Popova, L.P. (2002): Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. J. Plant Physiol., 159: 685-693.

Anderson, M.D., Chen, Z., Klessig, D.F. (1998): Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR-1 gene expression. Phytochem., 47: 555-566.

Arisi, A.C.M., Mocquot, B., Lagriffoul, A., Mench, M., Foyer, C.H., Jouanin, L. (2000): Responses to cadmium in leaves of transformed poplars overexpressing gamma-glutamylcysteine synthetase. Physiol. Plant., 109: 143-149.

Astolfi, S., Zuchi, S., Passera, C. (2005): Effect of cadmium on H+ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants. Plant Sci., 169: 361–368.

Atal, N., Saradhi, P.P, Mohanty, P. (1991): Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlinds with low concentrations of cadmium: Analysis of electron transport activities and changes in fluorescence yield. Plant Cell Physiol., 32: 943-951.

Baccouch, S., Chaoui, A., El Ferjani, E. (1998): Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiol. Biochem., 36: 689-694.

Baccouch, S., Chaoui, A., El Ferjani, E. (2001): Nickel toxicity induced oxidative damage in Zea mays roots. J. Plant Nutr., 24: 1085-1097.

Barceló, J., Poschenrieder, C. (1990): Plant water relations as affected by heavy metal stress: a review. J. Plant Nutr., 13: 1-37.

Bazzaz, F.A., Rolfe, G.L., Carlson, R.W. (1974): Effect of Cd on photosynthesis of excised leaves of corn ad sunflower. Physiol. Plant., 32: 373-376.

Bazzaz, M.B., Govindjee (1974): Effects of cadmium nitrate on spectral characteristics and light reactions of chloroplasts. Environ. Lett., 6: 1-12.

Bielawski, W., Joy, K.W. (1986): Properties of glutathione reductase from chloroplasts and roots of pea. Phytochem., 25: 2261-2265.

Bittell, J.E., Koeppe, D.E, Miller, R.J. (1974): Sorption of heavy metal cations by corn mitokondria and the effects on elektron and energy transfer reaction. Physiol. Plant. 30: 226-230.

Bligh, E.G., Dyer, W.J. (1959): A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911-917.

Borsani, O., Valpuesta, V., Botella, M.A. (2001): Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol., 126: 1024-1030.

Boussama, N., Ouariti, O., Suzuki, A., Ghorbal, M.H. (1999): Cd-stress on nitrogen assimilation. J. Plant Physiol., 155: 310-317.

Böddi, B., Oravecz, A.R., Lehoczki, E. (1995): Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica, 31: 411-420.

Bradford, M.M. (1976): A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-254.

Brown, S.L., Chaney, R.L., Angle, J.S., Baker, A.J.M. (1994): Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc- and cadmium-contaminated soils. J. Environ. Qual., 23: 1151-1157.

Cancado, G.M.A., De Rosa Jr., V.E., Fernandez, J.H., Maron, L.G., Jorge, R.A., Menossi, M. (2005): Glutathione S-transferase and aluminum toxicity in maize. Funct. Plant Biol., 32: 1045-1055.

Catinot, J., Buchala, A., Abou-Mansour, E., Métraux, J.P. (2008): Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Letters, 582: 473-478.

Chadha, K.C., Brown, S.A. (1974): Biosynthesis of phenolic acids in tomato plants infected with Agrobacterium tumefaciens. Can. J. Bot., 52: 2041-2047.

Chaffai, R., Marzouk, B., El Ferjani, E. (2005): Aluminum mediates compositional alterations of polar lipid classes in maize seedlings. Phytochem., 66: 1903-1912.

Chaffai, R., Elhammadi, M.A., Seybou, T.N., Tekitek, A., Marzouk, B., El Ferjani, E. (2007a): Altered fatty acid profile of polar lipids in maize seedlings in response to excess copper. J. Agron. Crop Sci., 193: 207-217.

Chaffai, R., Seybou, T.N., Marzouk, B., El Ferjani, E. (2007b): Effects of cadmium on polar lipid composition and unsaturation in maize (Zea mays) in hydroponic culture. J. Integr. Plant Biol., 49: 1693-1702.

Chassaigne, H., Vacchina, V., Kutchan, T.M., Zenk, M.H. (2001): Identification of phytochelatin-related peptides in maize seedlings exposed to cadmium and obtained enzymatically in vitro. Phytochem., 56: 657-668.

Chen, G.X., Asada, K. (1989): Ascorbate peroxidase in tea leaves: occurence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol., 30: 987-993.

Chen, J., Zhou, J., Goldsbrough, P.B. (1997): Characterization of phytochelatin synthase from tomato. Physiol. Plant., 101: 165-172.

Chen, Z., Ricigliano, J.R., Klessig, D.F. (1993a): Purification and characterization of a soluble salicylic acid binding protein from tobacco. Proc. Natl. Acad. Sci. USA, 90: 9533-9537.

Chen, Z., Silva, H., Klessig, D.F. (1993b): Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262: 1883-1886.

Chong, J., Pierrel, M.A., Atanassova, R., Werck-Reichhart, D., Fritig, B., Saindrenan, P. (2001): Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defence responses and role as salicylic acid precursors. Plant Physiol., 125: 318-328.

Ciecko, Z., Kalembasa, S., Wyszkowski, M., Rolka, E. (2004): Effect of soil contamination by cadmium on potassium uptake by plants. Polish J. Environ. Studies, 13: 333-337.

Clemens, S. (2006): Evolution and function of phytochelatin synthases. J. Plant Physiol., 163: 319-332.

Clijsters, H., van Assche, F. (1985): Inhibition of photosynthesis by heavy metals. Photosynth. Res., 7: 31-40.

Cobbett, C.S. (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol., 123: 825-832.



Cobbett, C.S., May, M.J., Howden, R., Rolls, B. (1998): The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thal
iana is deficient in -glutamylcysteine synthetase. Plant J., 16: 73-78.

Conrath, U., Chen, Z., Ricigliano, J.R., Klessig, D.F. (1995): Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad. Sci. USA, 92: 7143-7147.

Dániel, P., Győri, Z. (2000): A kadmium hatása a kukoricanövény fejlődésére. Növénytermelés, 49: 405-412.

Das, P., Samantaray, S., Rout, G.R. (1997): Studies on cadmium toxicity in plants: a review. Environ. Pollut., 98: 29-36.

Dat, J.F., Foyer, C.H., Scott, I.M. (1998a): Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol., 118: 1455-1461.

Dat, J.F., Lopez-Delgado, H., Foyer, C.H., Scott, I.M. (1998b) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol., 116: 1351-1357

Dat, J.F, Lopez-Delgado, H., Foyer, C.H., Scott, I.M. (2000): Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. J. Plant Physiol., 156: 659-665.

Dean, J.V., Mohammed, L.A., Fitzpatrick, T. (2005): The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta, 221: 287-296.

Deisseroth, A., Dounce, A. (1970): Catalase: physical and chemical properties, mechanism of catalysis and physiological role. Physiol. Rev., 50: 319-326.

Degenhardt, B., Gimmler, H. (2000): Cell wall adaptations to multiple environmental stresses in maize roots. J. Exp. Bot., 51: 595-603.

de Knecht, J.A., van Dillen, M., Koevoets, P.L.M., Schat, H., Verkleij, J.A.C., Ernst, W.H.O. (1994): Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiol., 104: 255-261.

Delhaize, E., Jackson, P.J., Lujan, L.D., Robinson, N.J. (1989): Poly (-glutamyl-cysteinyl) glicine synthesis in Datura innoxia and binding with cadmium. Plant Physiol., 89: 700-706.

Dixon, D.P., Lapthorn, A., Edwards, R. (2002) Plant glutathione transferases. Protein family review. Genome Biol. 3(3): reviews, 3004.1-3004.10.

Djebali, W., Zarrouk, M., Brouquisse, R., El Kahoui, S., Limam, F., Ghorbel, M.H., Chaibi, W. (2005): Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon esculentum) chloroplast membranes. Plant Biol., 7: 358-368.

Doulis, A.G., Debian, N., Kingston-Smith, A.H., Foyer, C.H. (1997): Differential localization of antioxidants in maize leaves. Plant Physiol., 114: 1031-1037.

Drazic, G., Mihailovic, N. (2005): Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci., 168: 511–517.



Drazic, G., Mihailovic, N., Lojic, M. (2006): Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biol. Plant., 50: 239-244.

Drazkiewicz, M., Baszynski, T. (2005): Growth parameters and photosynthetic pigments in leaf segments of Zea mays exposed to cadmium, as related to protection mechanisms. J. Plant Physiol., 162: 1013-1021.

Drazkiewicz, M., Tukendorf, A., Baszynski, T. (2003): Age-dependent response of maize leaf segments to cadmium treatment: Effect on chlorophyll fluorescence and phytochelatin accumulation. J. Plant Physiol., 160: 247-254.

Durner, J., Klessig, D.F. (1996): Salicylic acid is a modulator of tobacco and mammalian catalases. J. Biol. Chem., 271: 28492-28501.

Edreva, A. (2005): Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agr., Ecosyst. Environ., 106: 119-133.

Edwards, R., Dixon, D.P., Walbot, V. (2000): Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci., 5: 193-198.

Ekmekci, Y., Tanyolac, D., Ayhan, B. (2008): Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J. Plant Physiol., 165: 600-611.

El-Basyouni, S.Z., Chen, D., Ibrahim, R.K., Neish, A.C., Towers, G.H.N. (1964): The biosynthesis of hydroxybenzoic acid in higher plants. Phytochem., 3: 485-492.

Ellis, B.E., Amrhein, N. (1971): The ‘NIH-Shift’ during aromatic ortho-hydroxylation in higher plants. Phytochem., 10: 3069-3072.

Elthon, T.E., Nickels, L., McIntosh, L. (1989): Mitocondrial events during the development of thermogenesis in Sauromatum gutattum (Schett). Planta, 180: 82-89.

Enyedi, A.J. (1999): Induction of salicylic acid biosynthesis and systemic acquired resistance using the active oxygen species generator rose bengal. J. Plant Physiol., 154: 106-112.

Enyedi, A.J., Yalpani, N., Silverman, P., Raskin, I. (1992): Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc. Natl. Acad. Sci. USA, 89: 2480-2484.

Ernst, W.H.O., Vekleij, J.A.C., Schat, H. (1992): Metal tolerance in plants. Acta Bot. Neerl., 41: 229-248.

Eun, S.O., Youn, H.S., Lee, Y. (2000): Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol. Plant., 110: 357-365.

Fariduddin, Q., Hayat, S., Ahmad, A. (2003): Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica, 41: 281-284.

Ferretti, M., Ghisi, R., Merlo, L., Dalla Vecchia, F., Passera, C. (1993): Effect of cadmium on photosynthesis and enzymes of photosynthetic sulphate and nitrate assimilation pathways in maize (Zea mays L.). Photosynthetica, 29: 49-54.

Florijn, P.J., van Beusichem, M.L. (1993): Cadmium distribution in maize inbred lines – Effects of pH and level of Cd supply. Plant Soil, 153: 79-84.

Fodor, E., Szabó-Nagy, A., Erdei, L. (1995): The effects of cadmium on the fluidity and H+-ATP-ase activity of plasma membrane from sunflower and wheat roots. J. Plant Physiol., 147: 87-92.

Foley, S., Navaratnam, S., McGarvey, D.J., Land, E.J., Truscott, G., Rice-Evans, C.A. (1999): Singlet oxygen quenching nad the redox properties of hydroxycinnamic acids. Free Radical Bio. Med., 26: 1202-1208.

Foyer, C.H., Lelandais, M., Galap, C., Kunert, K.J. (1991): Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol., 97: 863-872.

Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M. (1997): Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant., 100: 241-254.

Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., Ryals, J. (1993): Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261: 754-756.

Gallego, S.M., Benavides, M.P., Tomaro, M.L. (1996): Effects of heavy metal ion in excess on sunflower leaves: evidences for involvement of oxidative stress. Plant Sci., 121: 151-159

Ganesan, V., Thomas, G. (2001): Salicylic acid response in rice: influence of salicylic acid on H2O2 accumulation and oxidative stress. Plant Sci., 160: 1095-1106.

Garretón, V., Carpinelli, J., Jordana, X., Holuigue, L. (2002): The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol., 130: 1516-1526.

Ghoshroy, S., Nadakavukaren, M.J. (1990): Influence of cadmium on the ultrastructure of developing chloroplasts in soybean and corn. Environ. Exp. Bot., 30: 187-192.

Gitelson, A.A., Buschmann, C., Lichtenthaler, H.K. (1999): The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sens. Environ. 69: 296-302.

Grant, J.J., Loake, G.J. (2000): Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol., 124: 21–29.

Grill, E., Loffler, S., Winnacker, E.L., Zenk, M.H. (1989): Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathion by a specific -glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA, 86: 6838-6842.

Grill, E., Winnacker, E.L., Zenk, M.H. (1985): Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science, 230:674-676.

Guo, B., Liang, Y., Zhu, Y. (2009): Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? J. Plant Physiol., 166: 20-31.

Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Guneri Bagci, E., Cicek, N. (2007): Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity.J. Plant Physiol., 164: 728-736.

Gunse, B., Llugany, M., Poschenrieder, C., Barcelo, J. (1992): Growth, cell wall elasticity and plasticity in Zea mays L. coleoptiles exposed to cadmium. Suelo y Planta, 2: 485-493.

Haghiri, F. (1973): Cadmium uptake by plants. J. Environ. Qual., 2: 93-96.

Hall, J.L. (2002): Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53: 1-11.

Hamada, A.M. (1998): Effects of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants. In: Photosynthesis: Mechanisms and Effects (ed. Garab G.). Kluwer Acad. Publ., Dordrecht, Vol. 4. pp. 2581-2584.

Hamada, A.M., Al-Hakimi, A.M.A. (2001): Salicylic acid versus salinity-drought induced stress on wheat seedlings. Rost. Vyr., 47: 444-450.

Harper, J.R., Balke, N.E. (1981): Characterization of the inhibition of K+ absorption in oats roots by salicylic acid. Plant Physiol., 68: 1349-1353.

Harwood, J.L. (1998): Environmental effects on plant lipid biochemistry. In: Plant Lipid biosynthesis. Fundamentals and Agricultural Applications (ed. Harwood J.L.) Cambridge Uni. Press, Cambridge: pp. 305-363.

Hassan, M.J., Wang, Z., Zhang, G. (2005): Sulfur alleviates growth inhibition and oxidative stress caused by cadmium toxicity in rice. J. Plant Nutr., 28: 1785–800.

Hegedűs, A., Erdei, S., Horváth, G. (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci., 160: 1085-1093.

Hell, R., Bergmann, L. (1990): -Glutamylcysteine synthetase in higher plants: Catalytic properties and subcellular localization. Planta, 180: 603-612.

Hernández, L.E., Cooke, D.T. (1997): Modification of root plasma membrane lipid composition of cadmium-treated Pisum sativum. J. Exp. Bot., 48: 1375-1381.

Horváth, E., Janda, T., Szalai, G., Páldi, E. (2002): In vitro salicylic acid inhibition of catalase activity in maize: differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Sci., 163: 1129-1135.



Howden, R., Andersen, C. R., Goldsbrough, P. B., Cobbett, C. S. (1995a): A cadmium-censitive, glutathione-deficient mutant of Arabidopsis thal
iana. Plant Physiol., 107: 1067-1073.

Howden, R., Goldsbrough, P. B., Andersen, C. R., Cobbett, C. S. (1995b): Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol., 107: 1059-1066.

Huang, J., Cardoza, Y.J., Schmelz, E.A., Raina, R., Engelberth, J., Tumlinson, J.H. (2003): Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta, 217: 767-775.

Iannelli, M.A., Pietrini, F., Fiore, L., Petrilli, L., Massacci, A. (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol. Biochem., 40: 977-982.

Jain, A., Srivastava, H.S. (1981): Effect of salicylic acid on nitrate reductase activity in maize seedlings. Physiol. Plant., 51: 339-342.

Janda, T., Szalai, G., Kissimon, J., Páldi, E., Marton, C., Szigeti, Z. (1994): Role of irradiance in the chilling injury of young maize plants studied by chlorophyll fluorescence induction measurements. Photosynthetica, 30: 293-299.

Janda, T., Szalai, G., Tari, I., Páldi, E. (1999): Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) plants. Planta, 208: 175-180.

Jemal, F., Zarrouk, M., Ghorbal, M.H. (2000): Effect of cadmium on lipid composition of pepper. Biochem. Soc. Trans., 28: 907-910.

Ju, G.C., Li, X.Z., Rauser, W.E., Oaks, A. (1997): Influence of cadmium on the production of -glutamylcysteine peptides and enzymes of nitrogen assimilation in Zea mays seedlings. Physiol. Plant., 101: 793-799.

Kang, H.M., Saltveit, M.E. (2002): Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol. Plant., 115: 571-576.

Keltjens, W.G., van Beusichem, M.L.(1998): Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil, 203: 119-126.

Kennedy, C.D., Gonsalves, F.A.N. (1987): The action of divalent Zn, Cd, Hg, Cu and Pb on the ATPase activity of a plasma membrane fraction isolated from roots of Zea mays. Plant Soil, 117: 167-175.

Klapheck, S., Yimmer, I., Cosse, H. (1990): Scavenging of hydrogen peroxide in the endosperm of Ricinus communis by ascorbate peroxidase. Plant Cell Physiol., 31: 1005-1012.

Klejdus, B., Zehnalek, J., Adam, V., Petrek, J., Kizek, R., Vacek, J., Trnkova, L., Rozik, R., Havel, L., Kuban, V. (2004): Sub-picomole high-performance liguid chromatographic/mass spectrometric determination of glutathione in the maize (Zea mays L.) kernels exposed to cadmium. Anal. Chim. Acta, 520: 117-124.

Klessig, D. F., Durner, J., Noad, R., Navarre, D.A., Wendehenne, D., Kumar, D., Zhou, J.M., Shah, J., Zhang, S., Kachroo, P., Trifa, Y., Pontier, D., Lam, E., Silva, H. (2000): Nitric oxid and salicylic acid signalling in plant defense. Proc. Natl. Acad. Sci. USA, 97: 8849-8855.

Kocsy, G., Szalai, G. Sutka, J., Páldi, E., Galiba, G. (2004): Heat tolerance together with heat stress-induced changes in glutathione and hydroxymethylglutathione levels is affected by chromosome 5A of wheat. Plant Sci., 166: 451-458.

Kocsy, G., von Ballmoos, P., Rüegsegger, A., Szalai, G., Galiba, G., Brunold, C. (2001): Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury. Plant Physiol., 127: 1147–1156.

Kong, X.S., Guo, X.P., Zhang, M.X. (1999) Effect of cadmium stress on the growth and phytochemistry of maize seedlings. J. Huazhong Agric. Univ. 18: 111-113.

Knox, J.P., Dodge, A.D. (1985): Singlet oxygen and plants. Phytochem., 24: 889-896.

Knörzer, O.C., Lederer, B., Durner, J., Böger, P. (1999): Antioxidative defense activation in soybean cells. Physiol. Plant., 107: 294-302.

Krantev, A., Yordanova, R., Janda, T., Szalai, G., Popova, L. (2008): Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J. Plant Physiol., 165: 920-931.

Krantev, A., Yordanova, R., Popova, L. (2006): Salicylic acid decreased Cd toxicity in maize plants. Gen. Appl. Plant Physiol., Special Issue, 45-52.

Krause, O., Hankamer, B., Konczak, C., Gerle, C., Morris, E., Radunz, A., Schmid, G.H., Barber, J. (2000): Phosphatidylglycerol is involved in the dimerization of photosystem II. J. Biol. Chem., 275: 6509-6514.

Krupa, Z. (1988): Cadmium-induced changes in the composition and structure of the light-harvesting complex II in radish cotyledons. Physiol. Plant., 73: 518–524.

Krupa, Z., Baszynski, T. (1995) Some aspects of heavy-metals toxicity towards photosynthetic apparatus – direct and indirect effects on light and dark reaction. Acta Physiol. Plant., 17: 177-190.

Krupa, Z., Huner, N.P.A., Williams, J.P., Maissan, E., James, D.R. (1987): Development at cold hardening temperature. The structure and composition of purified rye light harvesting complex II. Plant Physiol., 84: 19-24.

Kumar, P., Tewari, R.K., Sharma, P.N. (2008): Cadmium enchances generation of hydrogen peroxide and amplifies activities of catalase, peroxidases and superoxide dismutase in maize. J. Agron. Crop Sci., 194: 72-80.

Lagriffoul, A., Mocquot, B., Mench, M., Vangronsveld, J. (1998): Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil, 200: 241-250.

Lamarck, J.B. (1778): In: Flore Francaise 3. L'Emprimerie Royale, Paris, pp. 537-539.

Larkindale, J., Knight, M.R. (2002): Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiol., 128: 682-695.

Lee, H., León, J., Raskin, I. (1995): Biosynthesis and metabolism of salicylic acid. Proc. Natl. Acad. Sci. USA, 92: 4076-4079.

León, J., Lawton, M.A., Raskin, I. (1995a): Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol., 108: 1673-1678.

León, J., Shulaev, V., Yalpani, N., Lawton, M.A., Raskin, I. (1995b): Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyses salicylic acid biosynthesis. Proc. Natl. Acad. Sci. USA, 92: 10413-10417.

Loeffler, S., Hochberger, A., Grill, E., Winnacker, E.L., Zenk, M.H. (1989): Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEBS Lett., 258: 42-46.

Lopez-Delgado, H., Dat, J.F, Foyer, C.H., Scott, I.M. (1998): Induction of thermotolerance in potato microplants by acetyl-salicylic acid and H2O2. J. Exp. Bot., 49: 713-730.

LozanoRodriguez, E., Hernandez, L.E., Bonay, P., CarpenaRuiz, R.O. (1997): Distribution of cadmium in shoot and root tissues of maize and pea plants: Physiological disturbances. J. Exp. Bot., 48:123-128.

Luo, J.P., Jiang, S.T., Pan, L.J. (2001): Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.: relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Sci., 161: 125-132.

Maksymiec, W. (1997): Effect of copper on cellular processes in higher plants. Photosynthetica, 34: 321-342.

Malamy, J., Carr, J.P., Klessig, D.F., Raskin, I. (1990): Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250: 1002-1004.

Mannervik, B., Guthenberg, C. (1981): Glutathione transferase (Human placenta). Methods Enzymol., 77: 231-235.

Marrs, K.A. (1996): The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Phys. Plant Mol. Biol., 47: 127–158.

Marrs, K.A., Walbot, V. (1997): Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses. Plant Physiol., 113: 93-102.

McCourt, P., Browse, J., Watson, J., Arntzen, C.J., Somerville, C.R. (1985): Analysis of photosynthetic antenna function in a mutant of Arabidopsis thaliana (L.) lacking trans-hexadecanoic acid. Plant Physiol., 78: 853-858.

Melnyicsnyuk, J.P., Lisko, A.K. (1991): Effect of cadmium ions on the cell division of maize root meristem. Fiziologija i Biokhimija Kulturnik Rastenij, 23: 291-294.

Métraux, J.P. (2002): Recent breakthroughs in the study of salicylic acid biosynthesis. Trends Plant Sci., 7: 332-334.

Métraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., Raschdorf, K., Schmid, E., Blum, W., Inverardi, B. (1990): Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science, 250: 1004-1006.

Metwally A., Finkemeier I., Georgi M., Dietz K. J. (2003): Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant. Physiol., 132: 272-281.

Meuwly, P., Métraux, J. P. (1993): Ortho-anisic acid as internal standard for the simultaneous quantitation of salicylic acid and its putative biosynthetic precursors in cucumber leaves. Anal. Biochem., 214: 500-505.

Meuwly, P., Rauser, W.E. (1992): Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium. Plant Physiol., 99: 8-15.

Mishra, A., Choudhuri, M.A. (1997): Ameliorating effects of salicylic acid on lead and mercury - induced inhibition of germination and early seedling growth of two rice cultivars. Seed Sci. Technol., 25: 263-270.

Mishra, A., Choudhuri, M.A. (1999): Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol. Plant. 42: 409-415.

Mittler, R. (2002): Oxidative stress, antioxidants and stess tolerance. Trends Plant Sci., 7: 405-410.

Mittler, R., Zilinskas, B.A. (1991): Purification and characterisation of pea cytosolic ascorbate peroxidase. Plant Physiol., 97: 962.

Moharekar, S.T., Lokhande, S.D., Hara, T., Tanaka, R., Tanaka, A., Chavan, P.D. (2003): Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings. Photosynthetica, 41: 315-317.

Moons, A. (2005): Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam. Horm., 72: 155-202.

Munné-Bosch, S., Penuelas, J. (2003): Photo- and antioxidative protection, and role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta, 217: 758-766.

Nakano, Y., Asada, Y. (1987): Purification of ascorbate peroxidase from spinach chloroplasts: its activation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol., 28: 131-140.

Narwal, R.P., Mahendra-Singh-Singh, M. (1993): Effect of cadmium and zinc application on quality of maize. Indian J. Plant Physiol., 36: 170-173.

Neill, S., Desikan, R., Hancock, J. (2002): Hydrogen peroxide signaling. Curr. Opin. Plant Biol., 5: 388–395.

Németh, M., Janda, T., Horváth, E., Páldi, E., Szalai, G. (2002): Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci., 162: 569-574.

Neuenschwander, U., Vernooij, B., Friedrich, L., Uknes, S., Kessmann, H., Ryals, J. (1995): Is hydrogen peroxide a second messenger of salicylic acid in systemic acquired resistance? Plant J., 8: 227-233.

Nocito, F.F., Espen, L., Crema, B., Cocucci, M., Sacchi, G.A. (2008): Cadmium induces acidosis in maize root cells. New Phytol., 179: 700-711.

Nocito, F.F., Pirovano, L., Cocucci, M., Sacchi, G.A. (2002) Cadmium-induced sulfate uptake in maize roots. Plant Physiol., 129: 1872-1879.

Nouairi, I., Ben Ammar, W., Ben Youssef, N., Ben Miled Daoud, D., Ghorbal, M.H., Zarrouk, M. (2006): Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci., 170: 511-519.

Nussbaum, S., Schmutz, D., Brunold, C. (1988): Regulation of assimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiol., 88: 1407-1410.

Nyitrai, P., Bóka, K., Gáspár, L., Sárvári, É., Lenti, K., Keresztes, Á. (2003): Characterization of the stimulating effect of low-dose stressors in maize and bean seedlings. J. Plant Physiol., 160: 1175-1183.

Obata, H., Umebayashi, M. (1997): Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. J. Plant Nutr., 20: 97-105.

Okuda, T., Matsuda, Y., Yamanaka, A., Sagisaka, S. (1991): Abrupt increase in the level of hydrogen peroxide in leaves of wheat is caused by cold treatment. Plant. Physiol., 97: 1265-1267.

Ortiz, D.F., Kreppel, L., Speiser, D.M., Scheel, G., McDonald, G., Ow, D.W. (1992): Heavy metal tolerance in the fission yeast requires an ATP-binding casette-type vacuolar membrane transporter. EMBO J., 11: 3491-3499.

Ortiz, D.F., Ruscitti, T., McCue, K., Ow, D.W. (1995): Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J. Biol. Chem., 270: 4721-4728.

Ouariti, O., Boussama, N., Zabrouk, M., Cherif, A., Ghorbal, M.H. (1997): Cadmium- and copper-induced changes in tomato membrane lipids. Phytochem., 45: 1343-1350.

Overmyer, K., Brosché, M., Kangasjarvi, J. (2003): Reactive oxygen species and hormonal control of cell death. Trends Plant Sci., 8: 335-342.

Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G. (2004): Cadmium stimulate accumulation of salicylic acid and ortho-coumaric acid in maize. Acta Physiol. Plant., 26: 238.

Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G. (2005): Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays L.) plants. Physiol. Plant., 125: 356-364.

Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G. (2006a): Physiological changes and defense mechanisms induced by cadmium stress in maize. J. Plant Nutr. Soil Sci., 169: 239-246.

Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G. (2006b): The effect of cadmium stress on phytochelatin, thiol and polyamine content in maize. Cereal Res. Commun., 34: 65-68.

Pál, M., Leskó, N., Janda, T., Páldi, E., Szalai, G. (2007): Cadmium-induced changes in the membrane lipid composition of maize plants. Cereal Res. Commun., 35: 1631-1642.

Pál, M., Szalai, G., Horváth, E., Janda, T., Páldi, E. (2002): Effect of salicylic acid during heavy metal stress. Acta Biol. Szegediensis, 46: 119-120.

Pancheva, T.V., Popova, L.P., Uzunova, A.N. (1996): Effects of salicylic acid on growth and photosynthesis in barley plants. J. Plant. Physiol., 149: 57-63.

Pan, Q., Zhan, J., Liu, H., Zhang, J., Chen, J., Wen, P., Huang, W. (2006): Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Sci., 171: 226-233.

Parekh, D., Puranik, R.M., Srivastava, H.S. (1990): Inhibition of chlorophyll biosynthesis by cadmium in greening maize leaf segments. Biochem. Physiol. Pflanzen., 186: 239-242.

Park, S.W., Kaimoyo, E., Kumar, D., Mosher, S., Klessig, D.F. (2007): Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318: 113-116.

Pastori, G., Foyer, C.H. (2002): Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol., 129: 460-468.

Pham-Quoc, K., Dubacq, J. P., Demandre, C., Mazliak, P. (1994): Comparative effects of exogenous fatty-acid supplementations on the lipids from the Cyanobacterium spirulina-platensis. Plant Physiol. Biochem., 32: 501-509.

Potesil, D., Petrlova, J., Adam, V., Vacek, J., Klejdus, B., Zehnalek, J., Trnkova, L., Havel, L., Kizek, R. (2005): Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A, 1084 : 134–144.

Prasad, M.N.V. (1995a): Cadmium toxicity and tolerance in vascular plants. Environ. Exp. Bot., 35: 525-545.

Prasad, M.N.V. (1995b): Inhibition of maize leaf chlorophylls, carotenoids and gas exchange functions by cadmium. Photosynthetica, 31: 635-640.

Prochazkova, D., Sairam, R.K., Srivastava, G.C.,. Singh, D.V (2001): Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci., 161: 765–771.

Pukacki, P.M., Kaminska-Rozek, E. (2002): Long-term implications of industrial pollution stress on lipid composition in Scots pine (Pinus sylvestris L.) roots. Acta Physiol. Plant., 24: 249-255.

Punz, W.F., Sieghardt, H. (1993): The response of roots of herbaceous plant species to heavy metals. Environ. Exp. Bot., 33: 85-98.

Rakwal, R., Agraval, G.K., Agraval, V.P. (2001): Jasmonate, salicylate, protein phophatase 2A inhibitors and kinetin up-regulate OsPR5 expression in cut-responsive rice (Oryza sativa). J. Plant Physiol., 158: 1357-1362.

Rao, M.V., Davis, K.R. (1999): Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J., 17: 603-614.

Rao, M.V., Paliyath, G., Ormrod, D.P., Murr, D.P., Watkins, C.B. (1997): Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2–metabolizing enzymes. Plant Physiol., 115: 137-149.

Rascio, N., Dalla Vecchia, F., Ferretti, M., Merlo, L., Ghisi, R. (1993) Some effects of cadmium on maize plants. Arch. Environ. Con. Tox., 25: 244-249.

Raskin, I. (1992): Role of salicylic acid in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 43: 439-463.

Raskin, I., Ehmann, A., Melander, W.R., Meeuse, B.J.D. (1987): Salicylic acid: a natural inducer of heat production in Arum lilies. Science, 237: 1601-1602.

Rauser, W.E. (1986): The amount of cadmium associated with Cd-binding protein in roots of Agrostis gigantea, maize and tomato. Plant Sci., 43: 85-91.

Rauser, W.E. (1987): Changes in glutathione content of maize seedlings exposed to cadmium. Plant Sci., 51: 171-175.

Rauser, W.E. (2003): Phytochelatin-based complexes bind various amounts of cadmium in maize seedlings depending ont he time of exposure, the concentration of cadmium and the tissue. New Phytologist, 158: 269-278.

Rauser, W.E., Meuwly, P. (1995): Retention of cadmium in roots of maize seedlings. Plant Physiol., 109: 195-202.

Ray, V.K., Sharma, S.S., Sharma, S. (1986): Reversal of ABA-induced stomatal closure by phenolic compounds. J. Exp. Bot., 37: 129-134.

Reese, R.N., White, C.A., Winge, D.R. (1992): Cadmium-sulfide crystallites in Cd-(-EC)nG peptide complexes from tomato. Plant Physiol., 98: 225-229.

Rellán-Álvarez, R., Ortega-Villasante, C., Álvarez-Fernández, A., Campo, F., Hernández, L. (2006): Stress responses of Zea mays to cadmium and mercury. Plant Soil, 279: 41-50.

Rhoads, D.M., McIntosh, L. (1991): Isolation and characterization of cDNA clone encoding an alternative oxidase protein in Sauromatum gutattum (Schett). Proc. Natl. Acad. Sci. USA, 88: 2122-2126.

Rhoads, D.M., McIntosh, L. (1992): Cytochrome and alternative pathway respiration in tobacco. Effects of salicylic acid. Plant Physiol., 103: 877-883.

Rodriguez-Serrano, M., Romero-Puertas M.C., Zabalza, A., Corpas F.J., Gomez, M., Del Rio, L.A., Sandalio L.M. (2006): Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ., 29: 1532-1544.

Ros, R., Cooke, D.T., Burden, R.S., James, C.S. (1990): Effect of the herbicide MCPA, ant the heavy metals, cadmium and nickel on the lipid composition, Mg2+-ATP-ase activity and fluidity of plasma membranes from rice, Oryza sativa (cv. Bahia) shoots. J. Exp. Bot., 41: 457-462.

Rucinska, R., Gwózdz, E.A. (2005): Influence of lead on membrane permeability and lipoxygenase activity in lupine roots. Biol. Plant., 49: 617-619.

Rüegsegger, A., Brunold, C. (1992): Effect of cadmium on -glutamylcysteine synthesis in maize seedlings. Plant Physiol., 99: 428-433.

Rüffer, M., Steipe, B., Zenk, M.H. (1995): Evidence against specific binding of salicylic acid to plant catalase. FEBS Letters, 377: 175-180.

Sanita di Toppi, L., Gabrielli, R. (1999): Response to cadmium in higher plants. Environ. Exp. Bot., 41: 105-130.

Sawada, H., Shim, I.S., Usui, K. (2006): Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis – Modulation by salt stress in rice seedlings. Plant Sci., 171: 263-270.

Sánchez-Casas, P., Klessig, D.F. (1994): A salicylic acid-binding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol., 106: 1675-1679.

Scandalios, J.G., Guan, L., Polidoros, A.N. (1997): Catalases in plants: gene structure, properties, regulation and expression. In: Scandalios, J.G. (ed.) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. pp. 343-406.

Senaratna, T., Touchell, D., Bunn, E., Dixon, K. (2000): Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul., 30: 157-161.

Seregin, I., Kozhevnikova, A. (2005): Distribution of cadmium, lead, nickel and strontium in imbibing maize caryopses. Russian J. Plant Physiol. 52: 565-569.

Seregin, I.V., Ivanov, V.B. (1998): The transport of cadmium and lead ions through root tissues. Russ. J. Plant Physiol., 45: 780-785.

Seregin, I.V., Vooijs, R., Kozhevnikova, A.D., Ivanov, V.B., Schat, H. (2007): Effects of cadmium and lead on phytochelatin accumulation in maize shoots and different root parts. Dokl. Biol. Sci., 415: 304-306.

Shah, K., Kumar, R. G., Verma, S., Dubey, R.S. (2001): Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci., 161: 1135–1144.

Shao, H.B., Chu, L.Y., Shao, M.A., Jaleel, C.A., Mi, H.M. (2008): Higher plant antioxidants and redox signaling under environmental stresses. CR Biol., 331: 433–441.

Sharma, Y.K., León, J., Raskin, I., Davis, K.R. (1996): Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proc. Natl. Acad. Sci. USA, 93: 5099-5104.

Siedlecka, A., Baszynski, T. (1993): Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol. Plant., 87: 199-202.

Singh, S., Saxena, R., Pandey, K., Bhatt, K., Sinha, S. (2004): Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: its metal accumulation potential. Chemosphere, 57: 1663–73.

Siroka, B., Huttova, J., Tamas, L., Simonoviva, M., Mistrik, I. (2004): Effect of cadmium on hydrolytic enzymes in maize root and coleoptile. Biologia, 59: 513-517.

Smith, I.K., Vierheller, T.L., Thorne, C.A. (1988): Assay of glutathione reductase in crude tissue homogenates using 5,5’-dithiobis (2-nirtobenzoic acid). Anal. Biochem., 175: 408-413.

Souza, J., Dolder, H., Cortelazzo, A. (2005): Effect of excess cadmium and zink ions on roots and shoots of maize seedlings. J. Plant Nutr., 28: 1923-1931.

Souza, J.F., Rauser, W.F. (2003): Maize and radish sequester excess cadmium and zinc in different ways. Plant Sci., 165: 1009-1022.

Srivastava, M.K., Dwivedi, U.N. (1998): Salicylic acid modulates glutathion metabolism in pea seedlings. J. Plant Physiol., 153: 409-414.

Srivastava, S., Tripathi, R.D., Dwivedi, U.N. (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa – an angiospermic parasite. J. Plant Physiol., 161: 665-674

Stefanov, K., Popova, I., Kamburova, E., Pancheva, T., Kimenov, G., Kuleva, L., Popov, S. (1993): Lipid and sterol changes in Zea mays caused by lead ions. Phytochem., 33: 47-51.

Stefanov, K., Seizova, K., Popova, I., Petkov, V., Kimenov, G., Popov, S. (1995): Effect of lead ions on the phospholipid composition in leaves of Zea mays and Phaseolus vulgaris. J. Plant Physiol., 147: 243-246.

Stiborova, M., Doubravova, M., Leblova, S. (1986): A comparative-study of the effect of heavy-metal ions on ribulose-1,5-biphosphate carboxylase and phosphoenol pyruvate carboxylase. Biochem. Physiol. Pflanzen., 181: 373-379.

Sticher, L., Mauch-Mani, B., Métraux, J.P. (1997): Systemic acquired resistance. Annu. Rev. Plant Pathol., 35: 235-270.

Strasdeit, H., Duhme, A.K., Kneer, R., Zenk, M.H., Hermes, C.H., Nolting, H.F. (1991): Evidence for discrete Cd(SCys)4 units in cadmium phytochelatin complexes from EXAFS Spectroscopy. J. Chem. Soc. Chem. Commun., 16: 1129-1130.

Strobel, N.E., Kuc, A. (1995): Chemical and biological inducers of systemic acquired resistance to pathogens protect cucumber and tobacco from damage caused by paraquat and cupric chloride. Phytopathol., 85: 1306-1310.

Szalai, G., Janda, T., Golan-Goldhirsh, A., Páldi, E. (2002): Effect of Cd treatment on phytochelatin synthesis in maize. Acta Biol. Szegediensis, 46: 121-122.

Szalai, G., Janda, T., Páldi, E., Dubacq, J.P. (2001): Changes in the fatty acid unsaturation after hardening in wheat substitution lines with different cold tolerance. J. Plant Physiol., 158: 663-666.

Szalai, G., Pál, M., Horváth, E., Janda, T., Páldi, E.: (2005) Investigations on the adapability of maize lines and hybrids to low temperature and cadmium. Acta Agron. Hung., 53: 183-196.

Tanaka, K., Takeuchi, E., Kubo, A., Sakaki, T., Haraguch, K., Kawamura, Y. (1991): Two immunologically different isozymes of ascorbate peroxidase from spinach leaves. Arch. Biochem. Biophys., 286: 371-376.

Thomas, J.C., Perron, M., Davies, E.C. (2004): Genetic responsiveness to copper in the ice plant, Mesembryanthenuum crystallinum. Plant Sci., 167: 259-266.

Thompson, G.A.J.R. (1992): The regulation of membrane lipid. CRC Press, Boca Raton, FL, pp. 212.

Thompson, J.E., Froese, C.D., Madey, E., Smith, M.D., Hong, Y. (1998): Lipid metabolism during plant senescence. Prog. Lipid Res., 37: 119-141.

Thumann, J., Grill, E., Winnacker, E.L., Zenk, M.H. (1991): Reactivation of metal-requiring apoenzymes by phytochelatin-metal complexes. FEBS Lett., 284: 66-69.

Tiryakioglu, M., Eker, S., Ozkutku, F., Husted, S., Cakmak, I. (2006): Antioxidant defence system and cadmium uptake in barley genotypes differing in cadmium tolerance. J. Trace Elem. Med. Biol., 20: 181–189.

Tsaftaris, A.S, Bosabalidis, A.M., Scandalios, J.G. (1983): Cell-type-specific gene expression and acatalasemic peroxisomes in a null Cat2 catalase mutant of maize. Proc. Natl. Acad. Sci. USA, 83: 5549-5553.

Tudoreanu, L., Phillips, C.J.C. (2004): Modeling cadmium uptake and accumulation in plants. Adv. Agron., 84: 121-157.

Tukendorf, A., Rauser, W.E. (1990): Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci., 70: 155-166.

Upchurch, R.G. (2008): Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett., 30: 967-977.

Van Assche, F., Clijsters, H. (1990): Effects of metals on enzyme activity in plants. Plant Cell Environ., 13: 195-206.

Van Breusegem, F., Vranova, E., Dat, J.F., Inzé, D. (2001): The role of active oxygen species in plant signal transduction. Plant Sci., 161: 405–414.

Van Camp, W., Van Montagu, M., Inzé, D. (1998): H2O2 and NO: redox signals in disease resistance. Trends Plant Sci., 3: 330-334.

Verdoni, N., Mench, M. Cassagne, C., Bessoule, J. J. (2001): Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environ. Toxicol. Chem., 20: 382-388.

Vojtechová, M., Leblová, S. (1991): Uptake of lead and cadmium by maize seedlings and the effect of heavy metals on the activity of phosphoenol pyruvate carboxylase isolated from maize. Biol. Plant., 33: 386-394.

Wagner, G.J. (1993) Accumulation of cadmium in crop plants and its consequences to human health. In: Sparks, D.L. (ed.) Advances in Agronomy. Academic Press Inc, California pp. 173-212.

Wang, M., Zou, J., Duan, X., Jiang, W., Liu, D. (2007): Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresource Technol., 98: 82–88.

Watahiki, M.K., Mori, H., Yamamoto, K.T. (1995): Inhibitory effects of auxins and related substances on the activity of an Arabidopsis glutathione S-transferase isozyme expressed in Escherichia coli. Physiol. Plant., 94: 566-574.

Wildermuth, M.C., Dewdney, J., Wu, G., Ausubel, F.M. (2001): Arabidopsis defence againts pathogens requires salicylic acid synthesized isichorismate synthase. Nature, 414: 562-565.

Willekens, H., Chamnongpol, S., Davey, M., Schaudner, M., Langebartels, C., Van Montagu, M., Inzé, D., Van Camp, W. (1997): Catalase is a sink for H2O2 and is indispensible for stress defence in C3 plants. EMBO J., 16: 4806-4816.

Wójcik, M., Tukendorf, A. (1999): Cd-tolerance of maize, rye and wheat seedlings. Acta Physiol. Plant., 21: 99-107.

Wójcik, M., Tukendorf, A. (2005): Cadmium uptake, localization and detoxification in Zea mays. Biol. Plant., 49: 237-245.

Xu, P., Zou, J., Meng, Q., Zou, J., Jiang, W., Liu, D. (2008): Effects of Cd2+ on seedling growth of garlic (Allium sativum L.) and selected physiological and biochemical characters. Bioresource Technol., 99: 6372-6378.

Yalpani, N., Balke, N:E:, Schulz, M. (1992): Induction of UDP-glucose-salicylic acid glucosyltransferase inoat roots. Plant Physiol., 100: 1114-1119.

Yalpani, N., Enyedi, A.J., León, J., Raskin, I. (1994): Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta, 193: 372-376.

Yalpani, N., Léon, J., Lawton, M.A., Raskin, I. (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol., 103: 315-321.

Yalpani, N., Silverman, P., Wilson, T.M.A., Kleier, D.A., Raskin I. (1991): Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 3: 809-818.

Yang, X., Baligar, V.C., Martens, D.C., Clark, R.B. (1996): Cadmium effects on influx and transport of mineral nutrients in plant species. J. Plant Nutr., 19: 643-656.

Yang, Z.M., Wang, J., Wang, S.H., Xu, L.L. (2003) Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta, 217: 168-174.

Yannarelli, G.G., Fernández-Alvarez, A.J., Santa-Cruz, D.M., Tomaro, M. L. (2007): Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochem., 68: 505–512.

Zacchini, M., Rea, E., Tullio, M., de Agazio, M. (2003): Increased antioxidative capacity in maize calli during and after oxidative stress induced by long lead treatment. Plant Physiol. Biochem., 41: 49-54.

Zawoznik, M.S., Groppa, M.D., Tomaro, M.L., Benavides, M.P. (2007): Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Sci., 173: 190–197.



KÖSZÖNETNYILVÁNITÁS




Köszönet illeti az MTA Mezőgazdasági Kutatóintézete vezetőségét mindazért a támogatásért, amely lehetővé tette ezen munka elvégzését és a disszertáció elkészítését.

Köszönetemet fejezem ki témavezetőmnek, Dr. Szalai Gabriellának szakmai irányításáért, türelméért és bizalmáért.

Külön köszönettel tartozom Dr. Janda Tibornak, hogy tanácsaira és támogatására mindig számíthattam.

Megköszönöm közvetlen kollégáimnak, Dr. Páldi Emilnek, Dr. Horváth Eszternek, Kövesdi Ferencnének és Kóti Gyulánénak a kísérletek kivitelezése során nyújtott nélkülözhetetlen segítségüket és az általuk biztosított egyedien családias légkört.

Köszönettel tartozom a Fitotron munkatársainak a növénynevelés során nyújtott segítségükért.

Köszönetemet fejezem ki mindazoknak a kollégáknak, akik bármilyen formában segítették a munkámat.

Végül külön köszönet illeti családomat, szüleimet, hogy mindig mellettem álltak, támogattak szeretetükkel és gyermekeimet türelmükért.





Yüklə 0,87 Mb.

Dostları ilə paylaş:
1   ...   5   6   7   8   9   10   11   12   13




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə