Jamesowi B. Conantowi, który tę pracę inspirował



Yüklə 0,71 Mb.
səhifə6/11
tarix14.12.2017
ölçüsü0,71 Mb.
#15800
1   2   3   4   5   6   7   8   9   10   11
i w którym uprzednio się obracał. Jest to druga I przyczyna, dla której szkoły kierujące się różnymi paradygmatami zawsze trochę się rozmijają.

Doświadczenia psychologii postaci ilustrują | zazwyczaj jedynie istotę przeobrażeń percepcji. Nie mówią one o tym, jaką rolę w procesie postrzegania odgrywa paradygmat lub poprzednio ) nabyte doświadczenie. Kwestii tej poświęcona I jest jednak bogata literatura psychologiczna, I którą zawdzięczamy w znacznej mierze pionierskim pracom wykonanym w Instytucie Hanowerskim. Ktoś, komu w celach doświadczalnych | nałożono specjalne okulary o soczewkach od- | wracających, widzi początkowo cały świat do góry nogami. W pierwszej chwili jego aparat [ percepcyjny funkcjonuje tak, jak się tego nauczył bez okularów, czego wynikiem jest całkowita I dezorientacja i silne zdenerwowanie. Kiedy jed- I nak osobnik nauczy się obcować ze swoim nowym światem, całe jego pole widzenia po | okresie przejściowych zakłóceń znów się i odwraca. Widzi teraz wszystko tak, jak widział przed włożeniem okularów. Nastąpiła asymilacja | pola widzenia, zmieniająca samo to pole, które I początkowo wydawało się czymś nienormalnym. I Człowiek, który przyzwyczaił się do soczewek

nymi przykładami, musimy najpierw zorientować się, jakiego rodzaju świadectw możemy w ogóle oczekiwać od historii, a jakich nie.

Osobnik będący obiektem tego rodzaju badań psychologicznych wie, że sposób jego postrzegania uległ zmianie, bo może wielokrotnie przechodzić od jednego do drugiego sposobu widzenia, trzymając w ręku tę samą książkę czy kawałek papieru. Wiedząc, że nic się w jego otoczeniu nie zmieniło, zwraca coraz baczniejszą uwagę nie na postacie (kaczkę czy królika), lecz na linie na papierze, na który patrzy. W końcu może się nawet nauczyć dostrzegać tylko linie, nie widząc żadnej z figur, i wówczas może stwierdzić (czego nie mógł w sposób uprawniony powiedzieć wcześniej), że naprawdę widzi jedynie te linie, ale widzi je na przemian jako kaczkę i jako królika. Podobnie osoba poddana doświadczeniom z niezwykłymi kartami wie (a ściślej mówiąc, można ją przekonać), że jej sposób ppstrzęgąnia musiał ulec przeobrażeniu, gdyż zewnętrzny autorytet w osobie eksperymentatora zapewnia ją, że niezależnie od tego, co widziała, patrzyła cały czas na czarną piątkę kier. W obu tych wypadkach, tak samo zresztą jak we wszystkich podobnych doświadczeniach psychologicznych, skuteczność demonstracji zależy od tego, czy da się ona zanalizować w ten sposób. Gdyby nie zewnętrzny wzorzec, do którego można się odwołać, aby zademonstrować przeobrażenie sposobu widzenia, nie można by wnioskować o możliwości zmiennego postrzegania.

Gdy chodzi jednak o obserwacje naukowe, sytuacja jest dokładnie odwrotna. Uczony nie może odwołać się do niczego ponad to lub poza tym, co widzi na własne oczy i za pomocą przyrządów. Gdyby istniał dlań wyższy autorytet i gdyby odwołanie się do niego mogło wykazać zmianę jego sposobu widzenia, to sam ten autorytet stałby się dlań źródłem danych, a jego sposób widzenia — źródłem problemów (tak jak dla psychologa sposób widzenia podmiotu poddanego eksperymentom). Problemy tego samego rodzaju powstałyby, gdyby uczony mógł przestawiać się z jednego sposobu widzenia na inny, tak jak podmiot eksperymentów z psychologii postaci. Okres, w którym światło było „niekiedy falą, a niekiedy cząstką", był okresem kryzysu

okresem, w którym coś działo się nie tak



  • i zakończył się on dopiero wraz z powstaniem mechaniki kwantowej i zrozumieniem, że światło jest bytem swoistego rodzaju, różnym zarówno od fali, jak od cząstki. Jeżeli więc w nauce zmianom paradygmatu towarzyszą zmiany sposo.- bu postrzegania, nie możemy oczekiwać, że uczeni będą temu dawali bezpośrednie świadectwo. Ktoś, kogo dopiero co przekonano do koper- nikanizmu, nie powie, patrząc na Księżyc: „Zwykle widziałem planetę, a teraz widzę satelitę". Oświadczenie takie sugerowałoby, że system Ptolemeusza był kiedyś słuszny. Świeży wyznawca nowej astronomii powie raczej: „Kiedyś uważałem Księżyc za planetę (albo: traktowałem Księżyc jako planetę), ale myliłem się". Tego typu stwierdzenia rzeczywiście padają po rewolucjach naukowych. Skoro zazwyczaj maskują one prze- .tów w pierwszej połowie XIX wieku50. Historia astronomii przynosi wiele innych, znacznie mniej dwuznacznych przykładów zmian sposobu postrzegania świata przez uczonych pod wpływem przeobrażeń paradygmatu. Czy na przykład można uznać za przypadek, że astronomowie Zachodu dostrzegli po raz pierwszy zmiany w uznawanych poprzednio za niezmienne niebiosach w przeciągu pół wieku po pierwszym sformułowaniu nowego paradygmatu przez Kopernika? Chińczycy, których poglądy w dziedzinie kosmologii nie wykluczały zmian na niebie, o wiele wcześniej odnotowali pojawienie się na niebie wielu nowych gwiazd. Również Chińczycy, i to bez pomocy teleskopu, systematycznie notowali pojawienie się plam na Słońcu całe wieki przed tym, nim dostrzegł je Galileusz i jemu współcześni51. Ale ani plamy na Słońcu, ani nowa gwiazda nie są jedynymi przykładami zmian, które zaszły na niebie zachodniej astronomii bezpośrednio po Koperniku. Posługując się tradycyjnymi przyrządami, niekiedy tak prostymi jak kawałek nitki, astronomowie końca XVI wieku stwierdzali wielokrotnie, że komety swobodnie wędrują w obszarach przestrzeni poprzednio zastrzeżonych dla

nieruchomych gwiazd i planet7. Ze względu na łatwość i szybkość, z jaką astronomowie dostrzegali coś nowego, patrząc na dawno znane obiekty za pomocą starych przyrządów, ma się ochotę powiedzieć, że po Koperniku zaczęli oni żyć w zupełnie innym świecie. W każdym razie o tym wydają się świadczyć ich badania.

Wyżej przytoczone przykłady zaczerpnięte zostały z astronomii, gdyż w sprawozdaniach z obserwacji ciał niebieskich używa się zazwyczaj języka złożonego z względnie czystych terminów obserwacyjnych, a jedynie takie sprawozdania ujawnić mogą ewentualnie pełną analogię między obserwacjami uczonych a obserwacjami osobników poddawanych eksperymentom psychologicznym. Nie mamy jednak powodu upierać się przy pełnej analogii; wiele można osiągnąć, korzystając z luźniejszego modelu. Jeśli zadowolimy się czasownikiem „widzieć" w jego najbardziej codziennym sensie, szybko stwierdzimy, że.mieliśmy już sposobność || zetknąć się z wieloma innymi przykładami zmian : sposobu postrzegania towarzyszących przeobraże- i niom paradygmatów. To rozszerzone użycie terminów „postrzeżenie" i „widzenie" spróbujemy wkrótce uzasadnić, na razie jednak wskażemy, na czym polega ono w praktyce. : Spójrzmy ponownie na dwa spośród naszych i poprzednich przykładów z historii elektryczności. I W wieku XVII uczeni prowadzący badania w myśl Bv

7 T.S. Kuhn, Przewrót kopernikański..., dz. cyt.,

s. 314-319.

jeden przykład jego zastosowania. Będzie to przykład zaczerpnięty z jednej z najlepiej znanych części dzieła Galileusza. Już od zamierzchłej starożytności większość ludzi stykała się z takim czy innym ciężarem swobodnie kołyszącym się na linie czy łańcuchu, póki nie osiągnie stanu spoczynku. Arystotelicy, którzy uważali, że ciężar dzięki swej naturze porusza się z góry w dół, aby osiągnąć stan naturalnego spoczynku, twierdzili, że takie huśtające się ciało ma po prostu trudności ze spadaniem. Uwięzione na łańcuchu, osiągnąć może stan spoczynku w dolnym punkcie dopiero po dłuższym czasie ruchu wymuszonego. Natomiast Galileusz, patrząc na kołyszący się ciężar, widział wahadło — ciało, któremu niemal udaje się powtarzać ten sam ruch w nieskończoność. Kiedy zaś dostrzegł już tyle, dojrzał również i inne właściwości wahadła, na których oparł wiele najważniejszych i najbardziej oryginalnych części swej dynamiki. Z własności wahadła wyprowadził na przykład swój jedyny kompletny i pewny dowód niezależności prędkości spadania od ciężaru oraz od stosunku między wysokością a prędkością końcową w ruchu po równi pochyłej52. Wszystkie te zjawiska postrzegał on inaczej, niż widziano je poprzednio.

Co doprowadziło do tego przeobrażenia? Oczywiście, osobisty geniusz Galileusza. Należy jednak zaznaczyć, że ów geniusz nie przejawił się w dokładniejszej czy też bardziej obiektywnej obserwacji wahającego się ciała. Obserwacje Arystotelesa są pod względem opisowym równie ścisłe. Kiedy Galileusz zauważył, że okres drgań wahadła nie zależy od amplitudy, nawet przy amplitudach sięgających 90°, jego poglądy na wahadło pozwoliły mu dostrzec o wiele większą regularność niż ta, jaką potrafimy dziś wykryć". Wydaje się, że rola geniuszu polegała tu raczej na wykorzystaniu możliwości percepcyjnych, jakie stworzyła średniowieczna zmiana paradygmatu. Galileusz nie wyrósł całkowicie na gruncie ary sto tel izmu. Przeciwnie, uczono go analizy ruchu w kategoriach teorii impetu, późnośredniowiecznego paradygmatu, który głosił, że ciało ważkie porusza się nieprzerwanym ruchem dzięki sile wszczepionej mu przez ciało, które wprawiło je w ruch. Jean Buridan i Mikołaj z Oresme, czternastowieczni scholastycy, którzy nadali teorii impetu najdoskonalszą postać, znani są z tego, że pierwsi dostrzegli w ruchu wahadłowym przynajmniej część tego, co później zobaczył Galileusz. Buridan, opisując ruch drgającej struny, podaje, że impet został jej po raz pierwszy przekazany przy uderzeniu; następnie zostaje on zużyty na przemieszczenie struny wbrew oporowi jej napięcia; napięcie to odciąga z kolei strunę z powrotem, przy czym odzyskuje ona swój impet aż do chwili, kiedy osiąga położenie wyjściowe; teraz znów impet przemieszcza strunę w kierunku przeciwnym, wbrew jej napięciu, i tak dalej, przy czym ten

" Tamże, s. 250.

Jak dotąd żadna z tych zwiastujących kryzys dziedzin nie wyłoniła dość silnej koncepcji alternatywnej wobec tradycyjnego paradygmatu teorio- poznawczego. Zaczynają one jednak wskazywać, jakie powinny być niektóre charakterystyczne cechy tego odmiennego paradygmatu. Osobiście zdaję sobie doskonale sprawę z trudności, na jakie się narażam, powiadając, że kiedy Arystoteles i Galileusz patrzyli na kołyszący się kamień, pierwszy z nich dostrzegał utrudnione spadanie, a drugi

wahadło. Do tych samych trudności, może nawet w postaci jeszcze bardziej zasadniczej, prowadzą wstępne zdania niniejszego rozdziału — mimo iż świat nie ulega zmianie wraz ze zmianą paradygmatu, kiedy ona nastąpi, uczony pracuje w innym świecie. Jednakże jestem przekonany, że musimy nauczyć się nadawać sens tego rodzaju wypowiedziom. Tego, co się dzieje w trakcie rewolucji naukowej, nie da się sprowadzić do rein- terpretacji poszczególnych, niezmiennych danych. Po pierwsze, dane te nie są jednoznacznie ustalone. Ani wahadło nie jest spadającym kamieniem, ani tlen — zdeflogistonowanym powietrzem. W konsekwencji, jak wkrótce zobaczymy, różne są też dane, które zbierają uczeni, obserwując te rozmaite przedmioty. Co ważniejsze, proces, za pośrednictwem którego jednostka czy też zbiorowość przechodzi od koncepcji utrudnionego spadania do koncepcji wahadła albo od zdeflogistonowanego powietrza do tlenu, nie przypomina interpretacji. Jest to oczywiste, skoro uczony nie rozporządza jednoznacznie ustalonymi danymi, które miałby

interpretować. Badacz, który przyjmuje nowy paradygmat, przypomina bardziej człowieka korzystającego z soczewek odwracających niż interpretatora. Stykając się z tą samą co przedtem konstelacją przedmiotów i zdając sobie z tego sprawę, stwierdza jednak, że uległy one zasadniczej przemianie w wielu szczegółach.

Żadna z powyższych uwag nie ma na celu wykazania, że uczeni nie interpretują faktów i danych. Przeciwnie, Galileusz interpretował ruchy wahadła, Arystoteles — spadającego kamienia, Musschenbroek — obserwacje naładowanej elektrycznością butelki, a Franklin — obserwacje kondensatora. Ale każda z owych interpretacji zakładała pewien paradygmat. Stanowiły one część nauki normalnej, tj. działalności, która — jak to stwierdziliśmy — zmierza do uściślenia, rozszerzenia i uszczegółowienia już istniejącego paradygmatu. Rozdział trzeci dostarczył nam wielu przykładów, w których interpretacja odgrywała, zasadniczą rolę. Są to przykłady typowe dla zdecydowanej większości prac badawczych. W każdym z nich uczony, dzięki akceptowanemu paradygmatowi, wiedział, co jest dane, jakich przyrządów można użyć, aby te dane uzyskać, i jakie pojęcia zastosować w procesie interpretacji. Gdy dany jest paradygmat, interpretacja danych stanowi zasadniczy element opartych na nim badań.

Interpretacja jednak — jak pokazaliśmy w przedostatnim ustępie — może tylko doprowadzić do uszczegółowienia paradygmatu, a nie do jego korekty. Nauka normalna w żadnym razie nie

i okres wahania, czyli dokładnie te wielkości, których interpretacja mogła zrodzić jego prawa dotyczące wahadła. W tym przypadku interpretacja okazała się niemal niepotrzebna. Opierając się na galileuszowym paradygmacie, takie prawidłowości jak w wypadku wahadła można było nieomal dostrzec. W jaki bowiem inny sposób moglibyśmy wytłumaczyć odkrycie Galileusza, że okres drgań jest zupełnie niezależny od amplitudy, odkrycie, którego ślady nauka normalna wywodząca się od Galileusza musiała zatrzeć i którego nie możemy dziś w żaden sposób udokumentować? Prawidłowości, które nie mogły istnieć dla arystotelika (i których istotnie przyroda nigdzie jasno nie ujawnia), były konsekwencjami bezpośredniego doświadczenia dla kogoś, kto patrzył na kołyszący się kamień tak jak Galileusz.

Być może jest to przykład zbyt oderwany, arystotelicy bowiem nie rozpatrywali problemu wahającego się na uwięzi kamienia. Na gruncie ich paradygmatu było to zjawisko niezwykle złożone. Rozważali jednak przypadek prostszy — swobodnego spadku kamienia — odnaleźć możemy tu te same różnice w sposobie widzenia. Patrząc na spadający kamień, Arystoteles widział raczej zmianę stanu niż proces. Właściwymi miarami ruchu były dlań przeto cała przebyta odległość i cały czas trwania tego ruchu, parametry, które pozwalały uzyskać to, co obecnie nazwalibyśmy nie prędkością, lecz prędkością średnią53. Jednocześnie, ponieważ kamień ze swej natury zmuszony był dążyć do końcowego stanu spoczynku, Arystoteles traktował odległość raczej jako miarę drogi,- która w każdej chwili ruchu pozostawała do przebycia, niż jako miarę drogi przebytej54. Te pojęcia leżą u podstaw i nadają sens większości z jego dobrze znanych „praw ruchu". Częściowo opierając się na teorii impetu, częściowo zaś na doktrynie zwanej rozpiętością form, scholastyczna krytyka przekształciła ten sposób widzenia ruchu. Kamień wprawiony w ruch przez impet uzyskiwać go miał coraz więcej w miarę oddalania się od punktu wyjścia. W związku z tym istotnym parametrem stała się raczej odległość „od" niż droga „do". Ponadto Arystotele- sowskie pojęcie prędkości zostało rozszczepione przez scholastyków na dwa — które wkrótce po Galileuszu przybrały znaną nam postać prędkości średniej i prędkości chwilowej. Ale spadający kamień widziany poprzez paradygmat, którego częścią były te koncepcje, niemal na pierwszy rzut oka odsłania — podobnie jak wahadło — wszystkie rządzące nim prawa. Galileusz nie był bynajmniej pierwszym, który twierdził, że kamień spada ruchem jednostajnie przyśpieszonym55. Poza tym sformułował on swój pogląd na ten temat i przewidział wiele jego konsekwencji, zanim jeszcze przystąpił do doświadczeń z równią pochyłą. Twierdzenie to



czenie, z którego się one po części wywodzą, operacje i pomiary są determinowane przez paradygmat. W nauce nie dokonuje się wszystkich możliwych doświadczeń laboratoryjnych. Wybiera się natomiast te, które służyć mogą do konfrontacji paradygmatu z bezpośrednim doświadczeniem, przez tenże paradygmat częściowo wyznaczonym. W rezultacie uczeni uznający różne paradygmaty podejmują różne badania laboratoryjne. Pomiary, które trzeba wykonać, gdy chodzi o wahadło, nie są przydatne, gdy bada się utrudnione spadanie. Analogicznie, nie bada się własności tlenu za pośrednictwem tych samych operacji, jakie trzeba wykonać, badając własności zdeflogistonowanego powietrza.

Jeśli chodzi o język czysto obserwacyjny, być może zostanie on kiedyś jednak stworzony. Ale w trzy stulecia po Kartezjuszu związane z tym nadzieje wciąż opierają się wyłącznie na teorii postrzegania i umysłu. Natomiast współczesne doświadczenia psychologiczne gwałtownie rozszerzają krąg zjawisk, z którymi tamta teoria nie może sobie poradzić. Przypadek „kaczka-królik" dowodzi, że ludzie odbierający na siatkówce oka te same wrażenia mogą widzieć różne rzeczy, natomiast doświadczenie z soczewkami odwracającymi pokazuje, że dwie osoby odbierające na siatkówce różne wrażenia mogą widzieć to samo. Psychologia dostarcza wielu innych podobnych świadectw, a wszelkie wynikające stąd wątpliwości potęguje dodatkowo historia wysiłków podejmowanych w celu stworzenia języka obserwacyjnego. Żadne ze znanych prób osiągnięcia tego celu nie doprowadziły jak dotąd do zbudowania powszechnie stosowalnego języka czystej percepcji. Te zaś poczynania, które najbardziej się do tego zbliżyły, mają pewną właściwość, która dobitnie wspiera zasadnicze tezy niniejszej rozprawy. Od samego początku zakładają mianowicie pewien paradygmat, czy to zaczerpnięty z którejś ze współczesnych teorii naukowych, czy z jakiegoś fragmentu języka potocznego, i próbują potem wyeliminować zeń wszystkie terminy pozalogiczne i niepostrzeże- niowe. W niektórych dziedzinach próby te doprowadzono bardzo daleko, osiągając fascynujące rezultaty. Nie ulega najmniejszej wątpliwości, że warto je podejmować nadal. Wynikiem ich jednak jest język, który — podobnie jak języki stosowane w nauce — kryje w sobie mnóstwo przewidywań dotyczących przyrody i przestaje funkcjonować z chwilą, gdy te się nie sprawdzają. Takie właśnie stanowisko zajął na przykład Nelson Goodman, pisząc o celu, jaki przyświecał jego pracy Structure of Appearance: „Całe szczęście, że nie chodzi o nic więcej [niż o zjawiska, o których wiadomo, że naprawdę istnieją]; albowiem pojęcie przypadków «możliwych», które nie istnieją, lecz mogłyby istnieć, jest bardzo niejasne"56. Żaden język ograni- zmianie ulegają jego reakcje, oczekiwania, wierzenia, czyli duża część postrzeganego przez nie świata. Podobnie zwolennicy Kopernika, odmawiając Słońcu nazwy „planeta", nie tylko dowiadywali się, co znaczy „planeta" lub czym jest Słońce. Zmieniali zarazem znaczenie słowa „planeta", tak by nadal mogło ono być przydatne w świecie, w którym wszystkie ciała niebieskie, nie tylko Słońce, były widziane inaczej niż poprzednio. To samo dotyczy każdego z wymienionych wcześniej przykładów. To, że jakiś uczony dostrzega tlen zamiast zdef- logistonowanego powietrza, kondensator zamiast butelki lejdejskiej lub wahadło zamiast utrudnionego spadania — stanowi tylko część zmiany jego całościowego sposobu widzenia ogromnej różnorodności powiązanych ze sobą zjawisk chemicznych, elektrycznych czy też dynamicznych. Paradygmat determinuje rozległe obszary doświadczenia naraz.

Jednak dopiero wtedy, gdy doświadczenie zostanie tak zdeterminowane, rozpocząć można poszukiwania definicji operacyjnych lub czystego języka obserwacyjnego. Uczony lub filozof, który pyta, dzięki jakim pomiarom lub dzięki jakim reakcjom siatkówki wahadło staje się tym, czym jest, musi najpierw sam umieć rozpoznać wahadło, kiedy je zobaczy. Gdyby zamiast wahadła widział utrudnione spadanie, nie potrafiłby postawić takiego pytania. Gdyby zaś widział wahadło, ale patrzył na nie w ten sam sposób co na kamerton lub oscylującą wagę, jego pytanie musiałoby pozostać bez odpowiedzi. Co najmniej zaś nie można by na nie odpowiedzieć w ten sam sposób, nie byłoby to bowiem to samo pytanie. Tak więc pytania dotyczące reakcji siatkówki lub skutków poszczególnych zabiegów laboratoryjnych, mimo że są zawsze uprawnione, a niekiedy bardzo owocne, z góry zakładają świat o jakiejś już określonej strukturze percepcyjnej i pojęciowej. W pewnym sensie pytania takie są częścią nauki normalnej, uzależnione są bowiem od istnienia paradygmatu, a wskutek zmiany paradygmatu uzyskują inne odpowiedzi.



Aby podsumować ten rozdział, pomińmy już kwestię reakcji siatkówki i skoncentrujmy uwagę na czynnościach laboratoryjnych dostarczających uczonemu konkretnych, choć fragmentarycznych wskazówek dotyczących tego, co zaobserwował. Wielokrotnie wskazywaliśmy już jeden ze sposobów, w jaki zmiany paradygmatów wpływają na metody laboratoryjne. W wyniku rewolucji naukowej wiele dawnych pomiarów i operacji przestaje znajdować zastosowanie i zastąpione zostaje innymi. Nie można stosować tych samych dokładnie metod badań doświadczalnych do tlenu i do zdef- Iogistonowanego powietrza. Jednakże tego rodzaju zmiany nigdy nie są totalne. Po rewolucji uczony — cokolwiek by teraz dostrzegał —■ patrzy wciąż jednak na ten sam świat. Ponadto część terminologii i większość przyrządów laboratoryjnych pozostaje bez zmiany, choć dawniej mogły być stosowane w inny sposób. W rezultacie nauka okresu porewolucyjnego zawsze zachowuje wiele spośród dawnych operacji, posługując się tymi samymi bardzo silne. Sama teoria powinowactwa była mo-. cno uzasadniona. Poza tym powstawanie związku chemicznego tłumaczyć miało obserwowaną jednorodność substancji roztworu. Gdyby na przykład tlen i azot były tylko zmieszane w atmosferze, a nie połączone, wówczas gaz cięższy, tlen, powinien by osiadać na dole. Daltonowi, który traktował atmosferę jako mieszaninę gazów, nigdy nie udało się w pełni wytłumaczyć, dlaczego tak się nie dzieje. Przyjęcie jego teorii atomistycznej wytworzyło anomalię tam, gdzie przedtem żadnej anomalii nie było57.

Można by powiedzieć, że różnica między poglądem tych chemików, którzy uważali, że roztwór jest związkiem, a poglądami ich następców sprowadzała się tylko do definicji. W pewnym sensie mogło tak być rzeczywiście — o ile mianowicie przez definicję nie rozumiemy po prostu dogodnej konwencji. W wieku XVIII nie można było w sposób doświadczalny ściśle wyznaczyć granicy między związkami i mieszaninami. Nawet gdyby chemicy poszukiwali takich metod, szukaliby kryteriów, według których roztwór jest związkiem. Odróżnienie mieszaniny od związku stanowiło część ich paradygmatu, współtworzyło ich sposób widzenia całej dziedziny ich badań i jako takie miało wyższość nad każdą poszczególną metodą laboratoryjną, mimo że nie miało jej w stosunku do całości nagromadzonego w chemii doświadczenia.



Ale w czasie kiedy wyznawano tego rodzaju poglądy na chemię, zjawiska chemiczne stanowiły przejaw zupełnie innych praw niż te, które pojawiły się wraz z przyjęciem nowego paradygmatu Dal- tona. W szczególności, póki roztwory traktowano jako związki chemiczne, żadne doświadczenia, niezależnie od ich ilości, nie mogły same przez się doprowadzić do sformułowania prawa stosunków stałych i wielokrotnych. Pod koniec XVIII wieku wiedziano powszechnie, że
Yüklə 0,71 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10   11




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©genderi.org 2024
rəhbərliyinə müraciət

    Ana səhifə